ﻻ يوجد ملخص باللغة العربية
We study questions in incidence geometry where the precise position of points is `blurry (e.g. due to noise, inaccuracy or error). Thus lines are replaced by narrow tubes, and more generally affine subspaces are replaced by their small neighborhood. We show that the presence of a sufficiently large number of approximately collinear triples in a set of points in d dimensional complex space implies that the points are close to a low dimensional affine subspace. This can be viewed as a stable variant of the Sylvester-Gallai theorem and its extensions. Building on the recently found connection between Sylvester-Gallai type theorems and complex Locally Correctable Codes (LCCs), we define the new notion of stable LCCs, in which the (local) correction procedure can also handle small perturbations in the euclidean metric. We prove that such stable codes with constant query complexity do not exist. No impossibility results were known in any such local setting for more than 2 queries.
In this work we study arrangements of $k$-dimensional subspaces $V_1,ldots,V_n subset mathbb{C}^ell$. Our main result shows that, if every pair $V_{a},V_b$ of subspaces is contained in a dependent triple (a triple $V_{a},V_b,V_c$ contained in a $2k$-
A (q,k,t)-design matrix is an m x n matrix whose pattern of zeros/non-zeros satisfies the following design-like condition: each row has at most q non-zeros, each column has at least k non-zeros and the supports of every two columns intersect in at mo
Given graphs $G$ and $H$ and a positive integer $k$, the emph{Gallai-Ramsey number}, denoted by $gr_{k}(G : H)$ is defined to be the minimum integer $n$ such that every coloring of $K_{n}$ using at most $k$ colors will contain either a rainbow copy o
Given a graph $G$ and a positive integer $k$, the emph{Gallai-Ramsey number} is defined to be the minimum number of vertices $n$ such that any $k$-edge coloring of $K_n$ contains either a rainbow (all different colored) copy of $G$ or a monochromatic
The classical Kruskal-Katona theorem gives a tight upper bound for the size of an $r$-uniform hypergraph $mathcal{H}$ as a function of the size of its shadow. Its stability version was obtained by Keevash who proved that if the size of $mathcal{H}$ i