ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Hall Magnetoresistance Induced by a Non-Equilibrium Proximity Effect

165   0   0.0 ( 0 )
 نشر من قبل Hiroyasu Nakayama
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report anisotropic magnetoresistance in Pt|Y3Fe5O12 bilayers. In spite of Y3Fe5O12 being a very good electrical insulator, the resistance of the Pt layer reflects its magnetization direction. The effect persists even when a Cu layer is inserted between Pt and Y3Fe5O12, excluding the contribution of induced equilibrium magnetization at the interface. Instead, we show that the effect originates from concerted actions of the direct and inverse spin Hall effects and therefore call it spin Hall magnetoresistance.



قيم البحث

اقرأ أيضاً

Spin Hall magnetoresistance (SMR) refers to a resistance change in a metallic film reflecting the magnetization direction of a magnet attached to the film. The mechanism of this phenomenon is spin exchange between conduction-electron spins and magnet ization at the interface. SMR has been used to read out information written in a small magnet and to detect magnetization dynamics, but it has been limited to magnets; magnetic ordered phases or instability of magnetic phase transition has been believed to be indispensable. Here, we report the observation of SMR in a paramagnetic insulator Gd$_{3}$Ga$_{5}$O$_{12}$ (GGG) without spontaneous magnetization combined with a Pt film. The paramagnetic SMR can be attributed to spin-transfer torque acting on localized spins in GGG. We determine the efficiencies of spin torque and spin-flip scattering at the Pt/GGG interface, and demonstrate these quantities can be tuned with external magnetic fields. The results clarify the mechanism of spin-transport at a metal/paramagnetic insulator interface, which gives new insight into the spintronic manipulation of spin states in paramagnetic systems.
256 - Yijie Zeng , Luyang Wang , Song Li 2019
We study the magnetic proximity effect on a two-dimensional topological insulator in a CrI$_3$/SnI$_3$/CrI$_3$ trilayer structure. From first-principles calculations, the BiI$_3$-type SnI$_3$ monolayer without spin-orbit coupling has Dirac cones at t he corners of the hexagonal Brillouin zone. With spin-orbit coupling turned on, it becomes a topological insulator, as revealed by a non-vanishing $Z_2$ invariant and an effective model from symmetry considerations. Without spin-orbit coupling, the Dirac points are protected if the CrI$_3$ layers are stacked ferromagnetically, and are gapped if the CrI$_3$ layers are stacked antiferromagnetically, which can be explained by the irreducible representations of the magnetic space groups $C_{3i}^1$ and $C_{3i}^1(C_3^1)$, corresponding to ferromagnetic and antiferromagnetic stacking, respectively. By analyzing the effective model including the perturbations, we find that the competition between the magnetic proximity effect and spin-orbit coupling leads to a topological phase transition between a trivial insulator and a topological insulator.
117 - Yang Ji , J. Miao , K. K. Meng 2018
The spin Hall magnetoresistance (SMR) and anomalous Hall effect (AHE) are observed in a Cr2O3/Ta structure. The structural and surface morphology of Cr2O3/Ta bilayers have been investigated. Temperature dependence of longitudinal and transverse resis tances measurements confirm the relationship between SMR and AHE signals in Cr2O3/Ta structure. By means of temperature dependent magnetoresistance measurements, the physical origin of SMR in the Cr2O3/Ta structure is revealed, and the contribution to the SMR from the spin current generated by AHE has been proved. The so-called boundary magnetization due to the bulk antiferromagnetic order in Cr2O3 film may be responsible for the relationship of SMR and AHE in the Cr2O3/Ta bilayer.
Since the first experimental observation of the phonon Hall effect (PHE) in 2005, its physical origin and theoretical explanation have been extensively investigated. While spin-orbit interactions are believed to play important roles under external ma gnetic fields, nonmagnetic effects are also possible. Here, we propose a mechanism of PHE which is induced by electric current in a nonequilibrium system through electron-phonon interactions. The influence of the drift electrons to the phonon degrees of freedom, as a correction to the Born-Oppenheimer approximation, is represented by an antisymmetric matrix which has the same form as in a typical phonon Hall model. We demonstrate the idea with a graphene-like hexagonal lattice having a finite phonon Hall conductivity under a driven electric current.
464 - Ye Du , Saburo Takahashi , 2018
We analyze the experimentally obtained spin-current-related magnetoresistance in epitaxial Pt/Co bilayers by using a drift-diffusion model that incorporates both bulk spin Hall effect and interfacial Rashba-Edelstein effect (REE). The magnetoresistan ce analysis yields, for the Pt/Co interface, a temperature-independent Rashba parameter in the order of 1e-11 eV m that agrees with theoretical calculations, along with an effective interfacial REE thickness of several angstroms which is in overall consistency with our previous spin-orbit torque analysis. In particular, our results suggest that both bulk and interface charge-spin current inter-
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا