ﻻ يوجد ملخص باللغة العربية
The cytoskeleton of eukaryotic cells provides mechanical support and governs intracellular transport. These functions rely on the complex mechanical properties of networks of semiflexible protein filaments. Recent theoretical interest has focused on mesoscopic properties of such networks and especially on the effect of local, non-affine bending deformations on mechanics. Here, we study the impact of local network deformations on the scale-dependent mobility of probe particles in entangled networks of semiflexible actin filaments by high-bandwidth microrheology. We find that micron-sized particles in these networks experience two opposing non-continuum elastic effects: entropic depletion reduces the effective network rigidity, while local non-affine deformations of the network substantially enhance the rigidity at low frequencies. We show that a simple model of lateral bending of filaments embedded in a viscoelastic background leads to a scaling regime for the apparent elastic modulus G(omega) sim omega^{9/16}, closely matching the experiments. These results provide quantitative evidence for how different a semiflexible polymer network can feel for small objects, and they demonstrate how non-affine bending deformations can be dominant for the mobility of vesicles and organelles in the cell.
We present a method to generate realistic, three-dimensional networks of crosslinked semiflexible polymers. The free energy of these networks is obtained from the force-extension characteristics of the individual polymers and their persistent directi
We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams stiff polymers easily deform in bending, while they
The mechanical properties of DNA are typically described by elastic theories with purely local couplings (on-site models). We discuss and analyze coarse-grained (oxDNA) and all-atom simulations, which indicate that in DNA distal sites are coupled. He
It has become clear in recent years that the simple uniform wormlike chain model needs to be modified in order to account for more complex behavior which has been observed experimentally in some important biopolymers. For example, the large flexibili
We have developed a new technique to measure viscoelasticity in soft materials such as polymer solutions, by monitoring thermal fluctuations of embedded probe particles using laser interferometry in a microscope. Interferometry allows us to obtain po