ترغب بنشر مسار تعليمي؟ اضغط هنا

T-Cyg1-12664: A low-mass chromospherically active eclipsing binary in the Kepler field

114   0   0.0 ( 0 )
 نشر من قبل \\\"Om\\\"ur \\c{C}akirli Or
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The eclipsing binary T-Cyg1-12664 was observed both spectroscopically and photometrically. Radial velocities of both components and ground-based VRI light curves were obtained. The Keplers R-data and radial velocities for the system were analysed simultaneously. Masses and radii were obtained as 0.680$pm$0.021 M$_{odot}$ and 0.613$pm$0.007 R$_{odot}$for the primary and 0.341$pm$0.012M$_{odot}$ and 0.897$pm$0.012R$_{odot}$ for the secondary star. The distance to the system was estimated as 127$pm$14 pc. The observed wave-like distortion at out-of-eclipse is modeled with two separate spots on the more massive star, which is also confirmed by the Ca {sc ii} K and H emission lines in its spectra. Locations of the components in the mass-radius and mass-effective temperature planes were compared with the well-determined eclipsing binaries low-mass components as well as with the theoretical models. While the primary stars radius is consistent with the main-sequence stars, the radius of the less massive component appears to be 2.8 times larger than that of the main-sequence models. Comparison of the radii of low-mass stars with the models reveals that the observationally determined radii begin to deviate from the models with a mass of 0.27 Msun and suddenly reaches to maximum deviation at a mass of 0.34 Msun. Then, the deviations begin to decrease up to the solar mass. The maximum deviation seen at a mass of about 0.34 Msun is very close to the mass of fully convective stars as suggested by theoretical studies. A third star in the direction of the eclipsing pair has been detected from our VRI images. The observed infrared excess of the binary is most probably arisen from this star which may be radiated mostly in the infrared bands.

قيم البحث

اقرأ أيضاً

We observed spectroscopically the eclipsing binary system T-Cyg1-01385 in order to determine physical properties of the components. The double-lined nature of the system is revealed for the first time and the radial velocities are obtained for both s tars. We have derived masses, radii and luminosities for both components. Analyses of the radial velocities and the KeplerCam and the T$r$ES light curves yielded masses of M$_1$=1.059$pm$0.032 Msun ~and M$_2$=0.342$pm$0.017 {Msun} and radii of R$_1$=1.989$pm$0.022 {Rsun} and R$_2$=0.457$pm$0.013 {Rsun}. Locations of the low-mass companion in the mass-radius and mass-effective temperature planes and comparison with the other low-mass stars show that the secondary star appears just at the transition from partially to fully convective interiors for the M dwarfs. When compared to stellar evolution models, the luminosities and effective temperatures of the components are consistent with Z=0.004 and an age of about 6 Gyr. A distance to the system was calculated as d=355$pm$7 pc using the BV and JHK magnitudes.
124 - D. Dogru , A. Erdem , S. S. Dogru 2009
New high-resolution spectra, of the chromospherically active binary system CF Tuc, taken at the Mt. John University Observatory in 2007, were analyzed using two methods: cross-correlation and Fourier--based disentangling. As a result, new radial velo city curves of both components were obtained. The resulting orbital elements of CF Tuc are: $a_{1}{sin}i$=$0.0254pm0.0001$ AU, $a_{2}{sin}i$=$0.0228pm0.0001$ AU, $M_{1}{sin}i$=$0.902pm0.005$ $M_{odot}$, and $M_{2}{sin}i$=$1.008pm0.006$ $M_{odot}$. The cooler component of the system shows H$alpha$ and CaII H & K emissions. Our spectroscopic data and recent $BV$ light curves were solved simultaneously using the Wilson-Devinney code. A dark spot on the surface of the cooler component was assumed to explain large asymmetries observed in the light curves. The following absolute parameters of the components were determined: $M_{1}$=$1.11pm0.01$ $M_{odot}$, $M_{2}$=$1.23pm0.01$ $M_{odot}$, $R_{1}$=$1.63pm0.02$ $R_{odot}$, $R_{2}$=$3.60pm0.02$ $R_{odot}$, $L_{1}$=$3.32pm0.51$ $L_{odot}$ and $L_{2}$=$3.91pm0.84$ $L_{odot}$. The orbital period of the system was studied using the O-C analysis. The O-C diagram could be interpreted in terms of either two abrupt changes or a quasi-sinusoidal form superimposed on a downward parabola. These variations are discussed by reference to the combined effect of mass transfer and mass loss, the Applegate mechanism and also a light-time effect due to the existence of a massive third body (possibly a black hole) in the system. The distance to CF Tuc was calculated to be $89pm6$ pc from the dynamic parallax, neglecting interstellar absorption, in agreement with the Hipparcos value.
Using the high-precision photometry from the Kepler space telescope, thousands of stars with stellar and planetary companions have been observed. The characterization of stars with companions is not always straightforward and can be contaminated by s ystematic and stellar influences on the light curves. Here, through a detailed analysis of starspots and eclipses, we identify KOI-1003 as a new, active RS CVn star---the first identified with data from Kepler. The Kepler light curve of this close binary system exhibits the systems primary transit, secondary eclipse, and starspot evolution of two persistent active longitudes. The near equality of the systems orbital and rotation periods indicates the orbit and primary stars rotation are nearly synchronized ($P_mathrm{orb} = 8.360613pm0.000003$ days; $P_mathrm{rot} sim 8.23$ days). By assuming the secondary star is on the main sequence, we suggest the system consists of a $1.45^{+0.11}_{-0.19} M_odot$ subgiant primary and a $0.59^{+0.03}_{-0.04} M_odot$ main-sequence companion. Our work gives a distance of $4400 pm 600$ pc and an age of $t = 3.0^{-0.5}_{+2.0}$ Gyr, parameters which are discrepant with previous studies that included the star as a member of the open cluster NGC 6791.
We present our new photometric and spectroscopic observations of NSVS 02500276, NSVS 07453183, NSVS 11868841, NSVS 06550671 and NSVS 10653195. The first flare-like event was detected on NSVS07453183. Using the Wilson-Devinney program, the preliminary orbital solutions and starspot parameters are derived. The chromospheric activity indicators show NSVS10653195 and NSVS06550671 are active. Then, we discuss the starspot evolution on the short and long term scale. In the end, we give our future plan.
The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 square degree Kepler field of view. This release in corporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets. An online version of this catalog with downloadable content and visualization tools is maintained at http://keplerEBs.villanova.edu.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا