ﻻ يوجد ملخص باللغة العربية
The galactic center (GC) has long been a region of interest for high-energy and very-high-energy observations. Many potential sources of GeV/TeV gamma-ray emission are located in the GC region, e.g. the accretion of matter onto the central black hole, cosmic rays from a nearby shell-type super nova remnant, or the annihilation of dark matter. The GC has been detected at MeV/GeV energies by EGRET and recently by Fermi/LAT. At TeV energies, the GC was detected at the level of 4 standard deviations with the Whipple 10m telescope and with one order of magnitude better sensitivity by H.E.S.S. and MAGIC. We present the results from 3 years of VERITAS GC observations conducted at large zenith angles. The results are compared to astrophysical models.
The Galactic Center has long been a region of interest for high-energy and very-high-energy observations. Many potential sources of GeV/TeV gamma-ray emission have been suggested, e.g., the accretion of matter onto the black hole, cosmic rays from a
The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) gamma-ray observations. Potential sources of GeV/TeV gamma-ray emission have been suggested, e.g., the accretion of matter onto the supermas
The Galactic center region is the most active region in the Milky Way harboring a wealth of photon sources at all wavelengths. H.E.S.S. observations of the Galactic Center (GC) region revealed for the first time in very high energy (VHE, E> 100 GeV)
The Galactic Center (GC) region hosts a variety of powerful astronomical sources and rare astrophysical processes that emit a large flux of non-thermal radiation. The inner 375 pc x 600 pc region, called the Central Molecular Zone, is home to the sup
The Galactic Center Ridge has been observed extensively in the past by both GeV and TeV instruments revealing a wealth of structure, including both a diffuse component, the point sources G0.9+0.1 (a composite supernova remnant) and SgrA* (believed to