ترغب بنشر مسار تعليمي؟ اضغط هنا

Forward-backward correlations between multiplicities in windows separated in azimuth and rapidity

49   0   0.0 ( 0 )
 نشر من قبل Vladimir Vechernin
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The forward-backward (FB) charged particle multiplicity correlations between windows separated in rapidity and azimuth are analyzed using a model that treats strings as independent identical emitters. Both the short-range (SR) contribution, originating from the correlation between multiplicities produced from a single source, and the long-range (LR) contribution, originating from the fluctuation in the number of sources, are taken into account. The dependencies of the FB correlation coefficient, $b$, on the windows rapidity and azimuthal acceptance and the gaps between these windows are studied and compared with the preliminary data of ALICE. The analysis of these dependencies effectively separates the contributions of two above mechanisms. It is also demonstrated that traditional definitions of FB correlation coefficient $b$ have a strong nonlinear dependence on the acceptance of windows. Suitable alternative observables for the future FB correlation studies are proposed. The connection between $b$ and the two-particle correlation function, $C_2$, is traced, as well as its connection to the untriggered di-hadron correlation analysis. Using a model independent analysis, it is shown that measurement of the FB multiplicity correlations between two small windows separated in rapidity and azimuth fully determine the two-particle correlation function $C_2$, even if the particle distribution in rapidity is not uniform.

قيم البحث

اقرأ أيضاً

We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initia l condition fit to deep inelastic scattering data and extended to nuclei with an optical Glauber procedure that introduces no additional parameters beyond the basic nuclear geometry. We present predictions for future forward RHIC and LHC measurements. The predictions are also compared to updated results for the nuclear modification factors for pion production, Drell-Yan dileptons and $J/psi$ mesons in the same forward kinematics, consistently calculated in the same theoretical framework. We find that leading order, running coupling high energy evolution in the CGC picture leads to a significant nuclear suppression at forward rapidities. This nuclear suppression is stronger for photons than for pions. We also discuss how this might change with next-to-leading order high energy evolution.
92 - Cyrille Marquet 2011
I discuss novel QCD phenomena recently observed in p+p, p+A and A+A collisions, that result from the non-linear dynamics of small-x gluons. I focus on di-hadron correlation measurements, as opposed to single-hadron observables often too inclusive to distinguish possible new effects from established mechanisms. Specifically, I discuss angular correlations of forward di-hadrons in d+Au collisions and long-range rapidity correlations in high-multiplicity p+p and Au+Au collisions.
It is demonstrated that in a two-stage scenario with elementary Poissonian emitters of particles (colour strings) arbitrarily distributed in their number and average multiplicities, the forward- backward correlations are completely determined by the final distribution of the forward particles. The observed linear form of the correlations then necessarily requires this distribution to have a negative binomial form. For emitters with a negative binomial distribution of the produced particles distributed so as to give the final distribution also of a negative binomial form, the forward-backward correlations have an essentially non-linear form, which disagrees with the experimental data.
RHIC experiments have recently measured the azimuthal correlation function of forward di-hadrons. The data show a disappearance of the away-side peak in central d+Au collisions, compared to p+p collisions, as was predicted by saturation physics. Inde ed, we argue that this effect, absent at mid-rapidity, is a consequence of the small-x evolution into the saturation regime of the Gold nucleus wave function. We show that the data are well described in the Color Glass Condensate framework.
111 - C. Aidala , Y. Akiba , M. Alfred 2019
The PHENIX experiment has studied nuclear effects in $p$$+$Al and $p$$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV on charged hadron production at forward rapidity ($1.4<eta<2.4$, $p$-going direction) and backward rapidity ($-2.2<eta<-1.2$, $A$-going direction). Such effects are quantified by measuring nuclear modification factors as a function of transverse momentum and pseudorapidity in various collision multiplicity selections. In central $p$$+$Al and $p$$+$Au collisions, a suppression (enhancement) is observed at forward (backward) rapidity compared to the binary scaled yields in $p$+$p$ collisions. The magnitude of enhancement at backward rapidity is larger in $p$$+$Au collisions than in $p$$+$Al collisions, which have a smaller number of participating nucleons. However, the results at forward rapidity show a similar suppression within uncertainties. The results in the integrated centrality are compared with calculations using nuclear parton distribution functions, which show a reasonable agreement at the forward rapidity but fail to describe the backward rapidity enhancement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا