ترغب بنشر مسار تعليمي؟ اضغط هنا

A Scalar Wigner Theory for Polarized Light in Nonlinear Kerr Media

44   0   0.0 ( 0 )
 نشر من قبل Mattias Marklund
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A scalar Wigner distribution function for describing polarized light is proposed in analogy with the treatment of spin variables in quantum kinetic theory. The formalism is applied to the propagation of circularly polarized light in nonlinear Kerr media and an extended phase space evolution equation is derived along with invariant quantities. We further consider modulation instability as well as the extension to partially coherent fields.

قيم البحث

اقرأ أيضاً

305 - Zheng Gong , Ming Li , Xianwen Liu 2020
Microcavity solitons enable miniaturized coherent frequency comb sources. However, the formation of microcavity solitons can be disrupted by stimulated Raman scattering (SRS), particularly in the emerging crystalline microcomb materials with high Ram an gain. Here, we propose and implement dissipation control---tailoring the energy dissipation of selected cavity modes---to purposely raise/lower the threshold of Raman lasing in a strongly Raman-active lithium niobate microring resonator, and realize on-demand soliton mode-locking or Raman lasing. Numerical simulations are carried out to confirm our analyses and agree well with experiment results. Our work demonstrates an effective approach to address strong SRS for microcavity soliton generation.
Integrated photonics plays a central role in modern science and technology, enabling experiments from nonlinear science to quantum information, ultraprecise measurements and sensing, and advanced applications like data communication and signal proces sing. Optical materials with favorable properties are essential for nanofabrication of integrated-photonics devices. Here we describe a material for integrated nonlinear photonics, tantalum pentoxide (Ta$_2$O$_5$, hereafter tantala), which offers low intrinsic material stress, low optical loss, and efficient access to Kerr-nonlinear processes. We utilize >800-nm thick tantala films deposited via ion-beam sputtering on oxidized silicon wafers. The tantala films contain a low residual tensile stress of 38 MPa, and they offer a Kerr index $n_2$=6.2(23)$times10^{-19}$ m$^2$/W, which is approximately a factor of three higher than silicon nitride. We fabricate integrated nonlinear resonators and waveguides without the cracking challenges that are prevalent in stoichiometric silicon nitride. The tantala resonators feature an optical quality factor up to $3.8times10^6$, which enables us to generate ultrabroad-bandwidth Kerr-soliton frequency combs with low threshold power. Moreover, tantala waveguides enable supercontinuum generation across the near-infrared from low-energy, ultrafast seed pulses. Our work introduces a versatile material platform for integrated, low-loss nanophotonics that can be broadly applied and enable heterogeneous integration.
Kerr optical frequency combs with multi-gigahertz spacing have previously been demonstrated in chip-scale microresonators, with potential applications in coherent communication, spectroscopy, arbitrary waveform generation, and radio frequency photoni c oscillators. In general, the harmonics of a frequency comb are identically polarized in a single microresonator. In this work, we report that one comb in one polarization is generated by an orthogonally polarized soliton comb and two low-noise, orthogonally polarized combs interact with each other and exist simultaneously in a single microresonator. The second comb generation is attributed to the strong cross-phase modulation with the orthogonally polarized soliton comb and the high peak power of the intracavity soliton pulse. Experimental results show that a second frequency comb is excited even when a continuous wave light as a seed-with power as low as 0.1 mW-is input, while its own power level is below the threshold of comb generation. Moreover, the second comb has a concave envelope, which is different from the sech2 envelope of the soliton comb. This is due to the frequency mismatch between the harmonics and the resonant frequency. We also find that the repetition rates of these two combs coincide, although two orthogonal resonant modes are characterized by different free spectral ranges.
487 - Y. L. Shi , Y. C. Huang , J. X. Wu 2015
We examine a Kerr phase gate in a semiconductor quantum well structure based on the tunnelling interference effect. We show that there exist a specific signal field detuning, at which the absorption/amplification of the probe field will be eliminated with the increase of the tunnelling interference. Simultaneously, the probe field will acquire a -pi phase shift at the exit of the medium. We demonstrate with numerical simulations that a complete 180^circ phase rotation for the probe field at the exit of the medium is achieved, which may result in many applications in information science and telecommunication.
Under strong laser illumination, few-layer graphene exhibits both a transmittance increase due to saturable absorption and a nonlinear phase shift. Here, we unambiguously distinguish these two nonlinear optical effects and identify both real and imag inary parts of the complex nonlinear refractive index of graphene. We show that graphene possesses a giant nonlinear refractive index n2=10-7cm2W-1, almost nine orders of magnitude larger than bulk dielectrics. We find that the nonlinear refractive index decreases with increasing excitation flux but slower than the absorption. This suggests that graphene may be a very promising nonlinear medium, paving the way for graphene-based nonlinear photonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا