ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrogen volume densities in nearby galaxies I - an automated approach

81   0   0.0 ( 0 )
 نشر من قبل Jonathan Heiner
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a simple model of photodissociated atomic hydrogen on a galactic scale, it is possible to derive total hydrogen volume densities. These densities, obtained through a combination of atomic hydrogen, far-ultraviolet and metallicity data, provide an independent probe of the combined atomic and molecular hydrogen gas in galactic disks. We present a new, flexible and fully automated procedure using this simple model. This automated method will allow us to take full advantage of a host of available data on galaxies in order to calculate total hydrogen volume densities of giant molecular clouds surrounding sites of recent star formation. So far this was only possible on a galaxy-by-galaxy basis using by-eye analysis of candidate photodissociation regions. We test the automated method by adopting different models for the dust-to-gas ratio and comparing the resulting densities for M74, including a new metallicity map of M74 produced by integral field spectroscopy. We test the procedure against previously published M83 volume densities based on the same method and find no significant differences. The range of total hydrogen volume densities obtained for M74 is approximately 5-700 cm-3 . Different dust-to-gas ratio models do not result in measurably different densities. The cloud densities presented here add M74 to the list of galaxies analyzed using the assumption of photodissociated atomic hydrogen occurring near sites of recent star formation and further solidify the method. For the first time, full metallicity maps were included in the analysis as opposed to metallicity gradients. The results will need to be compared to other tracers of the interstellar medium and photodissociation regions, such as CO and CII, in order to test our basic assumptions, specifically, our assumption that the HI we detect originates in photodissociation regions.

قيم البحث

اقرأ أيضاً

170 - B. S. Koribalski 2020
Here I briefly highlight our studies of the gas content, kinematics and star formation in nearby dwarf galaxies (D < 10 Mpc) based on the `Local Volume HI Survey (LVHIS, Koribalski et al. 2018), which was conducted with the Australia Telescope Compac t Array (ATCA). The LVHIS sample consists of nearly 100 galaxies, including new discoveries, spanning a large diversity in size, shape, mass and degree of peculiarity. The hydrogen properties of dwarf galaxies in two nearby groups, Sculptor and CenA / M83, are analysed and compared with many rather isolated dwarf galaxies. Around 10% of LVHIS galaxies are transitional or mixed-type dwarf galaxies (dIrr/dSph), the formation of which is explored. - I also provide a brief update on WALLABY Early Science, where we focus on studying the HI properties of galaxies as a function of environment. WALLABY (Dec < +30 degr, z < 0.26) is conducted with the Australian SKA Pathfinder (ASKAP), a 6-km diameter array of 36 x 12-m dishes, each equipped with wide-field (30 sq degr) Chequerboard Phased Array Feeds.
We explore the possibility of a local origin for ultra high energy cosmic rays (UHECRs). Using the catalogue of Karachentsev et al. including nearby galaxies with distances less than 10Mpc (Local Volume), we search for a correlation with the sample o f UHECR events released so far by the Pierre Auger collaboration. The counterpart sample selection is performed with variable distance and luminosity cuts which extract the most likely sources in the catalogue. The probability of chance correlation after penalizing for scans is 0.96%, which corresponds to a correlation signal of 2.6sigma. We find that the parameters that maximize the signal are psi=3.0deg, D_{max}=4Mpc and M_B=-15 for the maximum angular separation between cosmic rays and galaxy sources, maximum distance to the source, and sources brighter than B-band absolute magnitude respectively. This implies a preference for the UHECRs arrival directions to be correlated with the nearest and most luminous galaxies in the Local Volume. We note that nearby galaxies with D<10Mpc show a similar correlation with UHECRs as compared to that found by The Pierre Auger Collaboration using active galactic nuclei (AGNs) within 70-100Mpc instead of local galaxies, although less than 20% of cosmic ray events are correlated to a source in our study. However, the observational evidence for mixed composition in the high-energy end of the cosmic ray spectrum supports the possibility of a local origin for UHECRs, as CNO nuclei can travel only few Mpc without strong attenuation by the GZK effect, whereas the observed suppression in the energy spectrum would require more distant sources in the case of pure proton composition interacting with the CMB.
Mid-infrared molecular hydrogen (H$_2$) emission is a powerful cooling agent in galaxy mergers and in radio galaxies; it is a potential key tracer of gas evolution and energy dissipation associated with mergers, star formation, and accretion onto sup ermassive black holes. We detect mid-IR H$_2$ line emission in at least one rotational transition in 91% of the 214 Luminous Infrared Galaxies (LIRGs) observed with Spitzer as part of the Great Observatories All-sky LIRG Survey (GOALS). We use H$_2$ excitation diagrams to estimate the range of masses and temperatures of warm molecular gas in these galaxies. We find that LIRGs in which the IR emission originates mostly from the Active Galactic Nuclei (AGN) have about 100K higher H$_2$ mass-averaged excitation temperatures than LIRGs in which the IR emission originates mostly from star formation. Between 10 and 15% of LIRGs have H$_2$ emission lines that are sufficiently broad to be resolved or partially resolved by the high resolution modules of Spitzers Infrared Spectrograph (IRS). Those sources tend to be mergers and contain AGN. This suggests that a significant fraction of the H$_2$ line emission is powered by AGN activity through X-rays, cosmic rays, and turbulence. We find a statistically significant correlation between the kinetic energy in the H$_2$ gas and the H$_2$ to IR luminosity ratio. The sources with the largest warm gas kinetic energies are mergers. We speculate that mergers increase the production of bulk in-flows leading to observable broad H$_2$ profiles and possibly denser environments.
73 - Gustavo Morales 2018
In hierarchical models of galaxy formation, stellar tidal streams are expected around most, if not all, galaxies. Although these features may provide useful diagnostics of the $Lambda$CDM model, their observational properties remain poorly constraine d because they are challenging to detect and interpret and have been studied in detail for only a sparse sampling of galaxy population. More quantitative, systematic approaches are required. We advocate statistical analysis of the counts and properties of such features in archival wide-field imaging surveys for a direct comparison against results from numerical simulations. Thus, in this paper we aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies. The sample we construct will act as a foundational dataset for statistical comparison with cosmological models of galaxy formation. Our approach is based on a visual classification of diffuse features around a volume-limited sample of nearby galaxies, using a post-processing of Sloan Digital Sky Survey imaging optimized for the detection of stellar structure with low surface brightness. At a limiting surface brightness of $28 mathrm{mag~arcsec^{-2}}$, 14% of the galaxies in our sample exhibit evidence of diffuse features likely to have arisen from minor merging events. Our technique recovers all previously known streams in our sample and yields a number of new candidates. Consistent with previous studies, coherent arc-like features and shells are the most common type of tidal structures found in this study. We conclude that although some detections are ambiguous and could be corroborated or refuted with deeper imaging, our technique provides a reliable foundation for the statistical analysis of diffuse circumgalactic features in wide-area imaging surveys, and for the identification of targets for follow-up studies.
Nearby resolved dwarf galaxies provide excellent opportunities for studying the dust-producing late stages of stellar evolution over a wide range of metallicity (-2.7 < [Fe/H] < -1.0). Here, we describe DUSTiNGS (DUST in Nearby Galaxies with Spitzer) : a 3.6 and 4.5 micron post-cryogen Spitzer Space Telescope imaging survey of 50 dwarf galaxies within 1.5 Mpc that is designed to identify dust-producing Asymptotic Giant Branch (AGB) stars and massive stars. The survey includes 37 dwarf spheroidal, 8 dwarf irregular, and 5 transition-type galaxies. This near-complete sample allows for the building of statistics on these rare phases of stellar evolution over the full metallicity range. The photometry is >75% complete at the tip of the Red Giant Branch for all targeted galaxies, with the exception of the crowded inner regions of IC 10, NGC 185, and NGC 147. This photometric depth ensures that the majority of the dust-producing stars, including the thermally-pulsing AGB stars, are detected in each galaxy. The images map each galaxy to at least twice the half-light radius to ensure that the entire evolved star population is included and to facilitate the statistical subtraction of background and foreground contamination, which is severe at these wavelengths. In this overview, we describe the survey, the data products, and preliminary results. We show evidence for the presence of dust-producing AGB stars in 8 of the targeted galaxies, with metallicities as low as [Fe/H] = -1.9, suggesting that dust production occurs even at low metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا