ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas surface density, star formation rate surface density, and the maximum mass of young star clusters in a disk galaxy. I. The flocculent galaxy M33

406   0   0.0 ( 0 )
 نشر من قبل Jan Pflamm-Altenburg
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the relationship between maximum cluster mass, M_max, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H2) and star formation rate (Sigma_SFR) in the flocculent galaxy M33, using published gas data and a catalog of more than 600 young star clusters in its disk. By comparing the radial distributions of gas and most massive cluster masses, we find that M_max is proportional to Sigma_gas^4.7, M_max is proportional Sigma_H2^1.3, and M_max is proportional to Sigma_SFR^1.0. We rule out that these correlations result from the size of sample; hence, the change of the maximum cluster mass must be due to physical causes.



قيم البحث

اقرأ أيضاً

We analyze the relationship between maximum cluster mass, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H_2), neutral gas (Sigma_HI) and star formation rate (Sigma_SFR) in the grand design galaxy M51, using published gas data a nd a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. We find for clusters older than 25 Myr that M_3rd, the median of the 5 most massive clusters, is proportional to Sigma_HI^0.4. There is no correlation with Sigma_gas, Sigma_H2, or Sigma_SFR. For clusters younger than 10 Myr, M_3rd is proportional to Sigma_HI^0.6, M_3rd is proportional to Sigma_gas^0.5; there is no correlation with either Sigma_H_2 or Sigma_SFR. The results could hardly be more different than those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but M_3rd is proportional to Sigma_gas^3.8; M_3rd is proportional to Sigma_H_2^1.2; M_3rd proportional to Sigma_SFR^0.9. For the older sample in M51, the lack of tight correlations is probably due to the combination of the strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius, nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet traveled too far from their birthsites, the poor resolution of the radio data compared to the physical sizes of the clusters results in measured Sigmas that are likely quite diluted compared to the actual densities relevant for the formation of the clusters.
We study the relations between gas-phase metallicity ($Z$), local stellar mass surface density ($Sigma_*$), and the local star formation surface density ($Sigma_{rm SFR}$) in a sample of 1120 star-forming galaxies from the MaNGA survey. At fixed $Sig ma_{*}$ the local metallicity increases as decreasing of $Sigma_{rm SFR}$ or vice versa for metallicity calibrators of N2 and O3N2. Alternatively, at fixed $Sigma_{rm SFR}$ metallicity increases as increasing of $Sigma_{*}$, but at high mass region, the trend is flatter. However, the dependence of metallicity on $Sigma_{rm SFR}$ is nearly disappeared for N2O2 and N2S2 calibrators. We investigate the local metallicity against $Sigma_{rm SFR}$ with different metallicity calibrators, and find negative/positive correlations depending on the choice of the calibrator. We demonstrate that the O32 ratio (or ionization parameter) is probably dependent on star formation rate at fixed local stellar mass surface density. Additional, the shape of $Sigma_*$ -- $Z$ -- $Sigma_{rm SFR}$ (FMR) depends on metallicity calibrator and stellar mass range. Since the large discrepancy between the empirical fitting-based (N2, O3N2) to electronic temperature metallicity and the photoionization model-dependent (N2O2, N2S2) metallicity calibrations, we conclude that the selection of metallicity calibration affects the existence of FMR on $Sigma_{rm SFR}$.
300 - Eric Feigelson 2009
Most stars are born in rich young stellar clusters (YSCs) embedded in giant molecular clouds. The most massive stars live out their short lives there, profoundly influencing their natal environments by ionizing HII regions, inflating wind-blown bubbl es, and soon exploding as supernovae. Thousands of lower-mass pre-main sequence stars accompany the massive stars, and the expanding HII regions paradoxically trigger new star formation as they destroy their natal clouds. While this schematic picture is established, our understanding of the complex astrophysical processes involved in clustered star formation have only just begun to be elucidated. The technologies are challenging, requiring both high spatial resolution and wide fields at wavelengths that penetrate obscuring molecular material and remove contaminating Galactic field stars. We outline several important projects for the coming decade: the IMFs and structures of YSCs; triggered star formation around YSC; the fate of OB winds; the stellar populations of Infrared Dark Clouds; the most massive star clusters in the Galaxy; tracing star formation throughout the Galactic Disk; the Galactic Center region and YSCs in the Magellanic Clouds. Programmatic recommendations include: developing a 30m-class adaptive optics infrared telescope; support for high-resolution and wide field X-ray telescopes; large-aperture sub-millimeter and far-infrared telescopes; multi-object infrared spectrographs; and both numerical and analytical theory.
The probability distribution functions (PDFs) for atomic, molecular, and total gas surface densities of M33 are determined at a resolution of about 50~pc over regions that share coherent morphological properties to unveil fingerprints of self-gravity across the star-forming disk. Most of the total gas PDFs from the central region to the edge of the star-forming disk are well-fitted by log-normal functions whose width decreases radially outwards. Because the HI velocity dispersion is approximately constant across the disk, the decrease of the PDF width is consistent with a lower Mach number for the turbulent ISM at large galactocentric radii where a higher fraction of HI is in the warm phase. The atomic gas is found mostly at face-on column densities below N$_{H}^{lim}$=2.5 10$^{21}$~cm$^{-2}$, with small radial variations of N$_{H}^{lim}$. The molecular gas PDFs do not show strong deviations from log-normal functions in the central region where molecular fractions are high. Here the high pressure and rate of star formation shapes the PDF as a log-normal function dispersing self-gravitating complexes with intense feedback at all column densities that are spatially resolved. Power law PDFs for the molecules are found near and above N$_H^{lim}$, in the well defined southern spiral arm and in a continuous dense filament extending at larger galactocentric radii; this is evident in cloud samples at different evolutionary stages along the star formation cycle. In the filament nearly half of the molecular gas departs from a log-normal PDF and power laws are also observed in pre-star forming molecular complexes. The slope of the power law is between -1 and -2. This slope, combined with maps showing where the different parts of the power law PDFs come from, suggest a power-law stratification of density within molecular cloud complexes, which is consistent with the dominance of self-gravity.
Interacting galaxies surrounded by HI tidal debris are ideal sites for the study of young clusters and tidal galaxy formation. The process that triggers star formation in the low-density environments outside galaxies is still an open question. New cl usters and galaxies of tidal origin are expected to have high metallicities for their luminosities. Spectroscopy of such objects is, however, at the limit of what can be done with existing 8-10m class telescopes, which has prevented statistical studies of these objects. NGC2865 is an UV-bright merging elliptical galaxy with shells and extended HI tails. The regions observed in this work were previously detected using multi-slit imaging spectroscopy. We obtain new multislit spectroscopy of six young star-forming regions around NGC2865, to determine their redshifts and metallicities. The six emission-line regions are located 16-40 kpc from NGC2865 and they have similar redshifts. They have ages of ~10Myears and an average metallicity of 12+log(O/H) ~ 8.6, suggesting a tidal origin for the regions. It is noted that they coincide with an extended HI tail, which has projected density of N$_{HI}$ < 10$^{19}$ cm$^{-2}$, and displays a low surface brightness counterpart. These regions may represent the youngest of the three populations of star clusters already identified in NGC2865. The high, nearly-solar, oxygen abundances found for the six regions in the vicinity of NGC2865 suggest that they were formed by pre-enriched material from the parent galaxy, from gas removed during the last major merger. Given the mass and the location of the HII regions, we can speculate that these young star-forming regions are potential precursors of globular clusters that will be part of the halo of NGC2865 in the future. Our result supports the use of the multi-slit imaging spectroscopy as a useful tool for finding nearly-formed stellar systems around galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا