ترغب بنشر مسار تعليمي؟ اضغط هنا

Atmospheric neutrino flux at INO, South Pole and Pyhasalmi

64   0   0.0 ( 0 )
 نشر من قبل Mohammad Athar SAJJAD
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the calculation of the atmospheric neutrino fluxes for the neutrino experiments proposed at INO, South Pole and Pyhasalmi. Neutrino fluxes have been obtained using ATMNC, a simulation code for cosmic ray in the atmosphere. Even using the same primary flux model and the interaction model, the calculated atmospheric neutrino fluxes are different for the different sites due to the geomagnetic field. The prediction of these fluxes in the present paper would be quite useful in the experimental analysis.

قيم البحث

اقرأ أيضاً

We evaluate the prompt atmospheric neutrino flux including nuclear correction and $B$ hadron contribution in the different frameworks: NLO perturbative QCD and dipole models. The nuclear effect is larger in the prompt neutrino flux than in the total charm production cross section, and it reduces the fluxes by $10% - 30%$ depending on the model. We also investigate the uncertainty using the QCD scales allowed by the charm cross section data from RHIC and LHC experiments.
67 - P.A. Toale 2006
IceCube is currently being built deep in the glacial ice beneath the South Pole. In its second year of construction, it is already larger than its predecessor, AMANDA. AMANDA continues to collect high energy neutrino and muon data as an independent d etector until it is integrated with IceCube. After introducing both detectors, recent results from AMANDA and a status report on IceCube are presented.
241 - X.Bai , T.K.Gaisser , A.Karle 2006
The muon flux at the South-Pole was measured for five zenith angles, $0^{circ}$, $15^{circ}$, $35^{circ}$, $82.13^{circ}$ and $85.15^{circ}$ with a scintillator muon telescope incorporating ice Cherenkov tank detectors as the absorber. We compare the measurements with other data and with calculations.
68 - Tarak Thakore 2013
The India-based Neutrino Observatory (INO) will host a 50 kt magnetized iron calorimeter (ICAL@INO) for the study of atmospheric neutrinos. Using the detector resolutions and efficiencies obtained by the INO collaboration from a full-detector GEANT4- based simulation, we determine the reach of this experiment for the measurement of the atmospheric neutrino mixing parameters ($sin^2 theta_{23}$ and $|Delta m_{32}^2 |$). We also explore the sensitivity of this experiment to the deviation of $theta_{23}$ from maximal mixing, and its octant.
We present a new one-dimensional calculation of low and intermediate energy atmospheric muon and neutrino fluxes, using up-to-date data on primary cosmic rays and hadronic interactions. The existing agreement between calculated muon fluxes and the da ta of the CAPRICE 94 muon experiment provides an evidence in favor of the validity of our description of hadronic interactions and shower development. This also supports our neutrino fluxes which are essentially lower than those used for the standard analyses of the sub-GeV and multi-GeV neutrino induced events in underground detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا