ﻻ يوجد ملخص باللغة العربية
We present the calculation of the atmospheric neutrino fluxes for the neutrino experiments proposed at INO, South Pole and Pyhasalmi. Neutrino fluxes have been obtained using ATMNC, a simulation code for cosmic ray in the atmosphere. Even using the same primary flux model and the interaction model, the calculated atmospheric neutrino fluxes are different for the different sites due to the geomagnetic field. The prediction of these fluxes in the present paper would be quite useful in the experimental analysis.
We evaluate the prompt atmospheric neutrino flux including nuclear correction and $B$ hadron contribution in the different frameworks: NLO perturbative QCD and dipole models. The nuclear effect is larger in the prompt neutrino flux than in the total
IceCube is currently being built deep in the glacial ice beneath the South Pole. In its second year of construction, it is already larger than its predecessor, AMANDA. AMANDA continues to collect high energy neutrino and muon data as an independent d
The muon flux at the South-Pole was measured for five zenith angles, $0^{circ}$, $15^{circ}$, $35^{circ}$, $82.13^{circ}$ and $85.15^{circ}$ with a scintillator muon telescope incorporating ice Cherenkov tank detectors as the absorber. We compare the
The India-based Neutrino Observatory (INO) will host a 50 kt magnetized iron calorimeter (ICAL@INO) for the study of atmospheric neutrinos. Using the detector resolutions and efficiencies obtained by the INO collaboration from a full-detector GEANT4-
We present a new one-dimensional calculation of low and intermediate energy atmospheric muon and neutrino fluxes, using up-to-date data on primary cosmic rays and hadronic interactions. The existing agreement between calculated muon fluxes and the da