ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole masses from X-rays

88   0   0.0 ( 0 )
 نشر من قبل Roberto Soria
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xin-Lin Zhou




اسأل ChatGPT حول البحث

We discuss two methods to estimate black hole (BH) masses using X-ray data only: from the X-ray variability amplitude and from the photon index Gamma. The first method is based on the anti-correlation between BH mass and X-ray variability amplitude. Using a sample of AGN with BH masses from reverberation mapping, we show that this method shows small intrinsic scatter. The second method is based on the correlation between Gamma and both the Eddington ratio L_{bol}/L_{Edd} and the bolometric correction L_{bol}/L_{2-10keV}.

قيم البحث

اقرأ أيضاً

Determining the black hole masses in active galactic nuclei (AGN) is of crucial importance to constrain the basic characteristics of their central engines and shed light on their growth and co-evolution with their host galaxies. While the black hole mass (MBH) can be robustly measured with dynamical methods in bright type 1 AGN, where the variable primary emission and the broad line region (BLR) are directly observed, a direct measurement is considerably more challenging if not impossible for the vast majority of heavily obscured type 2 AGN. In this work, we tested the validity of an X-ray-based scaling method to constrain the MBH in heavily absorbed AGN. To this end, we utilized a sample of type 2 AGN with good-quality hard X-ray data obtained by the nuSTAR satellite and with MBH dynamically constrained from megamaser measurements. Our results indicate that, when the X-ray broadband spectra are fitted with physically motivated self-consistent models that properly account for absorption, scattering, and emission line contributions from the putative torus and constrain the primary X-ray emission, then the X-ray scaling method yields MBH values that are consistent with those determined from megamaser measurements within their respective uncertainties. With this method we can therefore systematically determine the MBH in any type 2 AGN, provided that they possess good-quality X-ray data and accrete at a moderate to high rate.
One of the central goals of LISA is the detection of gravitational waves from the merger of supermassive black holes. Contrary to stellar-mass black hole mergers, such events are expected to be rich X-ray sources due to the accretion of material from the circumbinary disks onto the black holes. The orbital dynamics before merger is also expected to modulate the resulting X-ray emission via Doppler boosting in a quasi-periodic way, and in a simple phase relation with the gravitational wave from the inspiral of the black holes. Detecting the X-ray source would enable a precise and early localization of the binary, thus allowing many telescopes to observe the very moment of the merger. Although identifying the correct X-ray source in the relatively large LISA sky localization will be challenging due to the presence of many confounding point sources, the quasi-periodic modulation may aid in the identification. We explore the practical feasibility of such idea. We simulate populations of merging supermassive black holes, their detection with LISA and their X-ray lightcurves using a simple model. Taking the parameters of the X-ray Telescope on the proposed NASA Transient Astrophysics Probe, we then design and simulate an observation campaign that searches for the modulated X-ray source while LISA is still observing the inspiral of the black holes. Assuming a fiducial LISA detection rate of $10$ mergers per year at redshift closer than $3.5$, we expect a few detections of modulated X-ray counterparts over the nominal duration of the LISA mission.
244 - A. R. Rao 2013
Observations of Galactic black hole sources are traditionally done in the classical X-ray range (2 -- 10 keV) due to sensitivity constraints. Most of the accretion power, however, is radiated above 10 keV and the study of these sources in hard X-rays has the potential to unravel the radiation mechanisms operating at the inner region of the accretion disk, which is believed to be the seat of a myriad of fascinating features like jet emission, high frequency QPO emission etc. I will briefly summarise the long term hard X-ray observational features like spectral state identification, state transitions and hints of polarised emission, and describe the new insights that would be provided by the forthcoming Astrosat satellite, particularly emphasising the contributions expected from the CZT-Imager payload.
The fundamental plane of black hole activity is a relation between X-ray luminosity, radio luminosity, and black hole mass for hard state Galactic black holes and their supermassive analogs. The fundamental plane suggests that, at low-accretion rates , the physical processes regulating the conversion of an accretion flow into radiative energy could be universal across the entire black hole mass scale. However, there is still a need to further refine the fundamental plane in order to better discern the radiative processes and their geometry very close to the black hole, in particular the source of hard X-rays. Further refinement is necessary because error bars on the best-fit slopes of the fundamental plane are generally large, and also the inferred coefficients can be sensitive to the adopted sample of black holes. In this work, we regress the fundamental plane with a Bayesian technique. Our approach shows that sub-Eddington black holes emit X-ray emission that is predominantly optically thin synchrotron radiation from the jet, provided that their radio spectra are flat or inverted. X-ray emission dominated by very radiatively inefficient accretion flows are excluded at the >3sigma level. We also show that it is difficult to place FR I galaxies onto the fundamental plane because their X-ray jet emission is highly affected by synchrotron cooling. On the other hand, BL Lac objects fit onto the fundamental plane. Including a uniform subset of high-energy peaked BL Lac objects from the SDSS, we find sub-Eddington black holes with flat/inverted radio spectra follow log L_x=(1.45pm0.04)log L_R-(0.88pm0.06)logM_{BH}-6.07pm1.10, with sigma_{int}=0.07pm0.05 dex. Finally, we discuss how the effects of synchrotron cooling of jet emission from the highest black hole masses can bias fundamental plane regressions, perhaps leading to incorrect inferences on X-ray radiation mechanisms.
We present follow-up X-ray observations of the candidate massive black hole (BH) in the nucleus of the low-mass, compact starburst galaxy Henize 2-10. Using new high-resolution observations from the Chandra X-ray Observatory totaling 200 ks in durati on, as well as archival Chandra observations from 2001, we demonstrate the presence of a previously unidentified X-ray point source that is spatially coincident with the known nuclear radio source in Henize 2-10 (i.e., the massive BH). We show that the hard X-ray emission previously identified in the 2001 observation is dominated by a source that is distinct from the nucleus, with the properties expected for a high-mass X-ray binary. The X-ray luminosity of the nuclear source suggests the massive BH is radiating significantly below its Eddington limit (~10^-6 L_Edd), and the soft spectrum resembles other weakly accreting massive BHs including Sagittarius A*. Analysis of the X-ray light curve of the nucleus reveals the tentative detection of a ~9-hour periodicity, although additional observations are required to confirm this result. Our study highlights the need for sensitive high-resolution X-ray observations to probe low-level accretion, which is the dominant mode of BH activity throughout the Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا