ﻻ يوجد ملخص باللغة العربية
Four sections of introductory physics for physical scientists and engineers (about 180 students each) are compared. One section, treatment group, was organized so that students worked to learn the classical ideas connecting forces and motion over the first 6 weeks of the 10 week quarter and then used the final 4 weeks to apply those principles to algebraically complicated problems. The other sections learned ideas at essentially the same time as calculations over the entire 10 weeks of the quarter. The treatment group and one of the control sections were taught by the same instructor, had identical curricular materials and this instructor was blind to the comparison measure, the final exam. After controlling for GPA as well as for incoming conceptual understanding, the treatment group was found (with greater than 99% confidence) to perform better on the final exam than the control group taught by the same instructor and, by a similar measure, the treatment group performed significantly better than any other section. The treatment group also had higher conceptual learning gains and so should be better prepared for later learning.
We discuss the development and validation of a conceptual multiple-choice survey instrument called the Survey of Thermodynamic Processes and First and Second Laws (STPFaSL) suitable for introductory physics courses. The survey instrument uses common
Psychologists have long known that an expert in a field not only knows significantly more individual facts/skills than a novice but also has these facts/skills organized into a mental hierarchy that links the individual facts (at the bottom of the hi
The Physics Inventory of Quantitative Literacy (PIQL), a reasoning inventory under development, aims to assess students physics quantitative literacy at the introductory level. The PIQLs design presents the challenge of isolating types of mathematica
The classic brachistrochrone problem is standard material in intermediate mechanics. Many variations exist including some accessible to introductory students. While a quantitative solution isnt feasible in introductory classes, qualitative discussion
We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 liter liquid