ﻻ يوجد ملخص باللغة العربية
We apply a molecular dynamics scheme to analyze classically chaotic properties of a two-dimensional circular billiard system containing two Coulomb-interacting electrons. As such, the system resembles a prototype model for a semiconductor quantum dot. The interaction strength is varied from the noninteracting limit with zero potential energy up to the strongly interacting regime where the relative kinetic energy approaches zero. At weak interactions the bouncing maps show jumps between quasi-regular orbits. In the strong-interaction limit we find an analytic expression for the bouncing map. Its validity in the general case is assessed by comparison with our numerical data. To obtain a more quantitative view on the dynamics as the interaction strength is varied, we compute and analyze the escape rates of the system. Apart from very weak or strong interactions, the escape rates show consistently exponential behavior, thus suggesting strongly chaotic dynamics and a phase space without significant sticky regions within the considered time scales.
We consider the motion of a particle subjected to the constant gravitational field and scattered inelasticaly by hard boundaries which possess the shape of parabola, wedge, and hyperbola. The billiard itself performs oscillations. The linear dependen
The dynamics in three-dimensional billiards leads, using a Poincare section, to a four-dimensional map which is challenging to visualize. By means of the recently introduced 3D phase-space slices an intuitive representation of the organization of the
We consider classical dynamical properties of a particle in a constant gravitational force and making specular reflections with circular, elliptic or oval boundaries. The model and collision map are described and a detailed study of the energy regime
We study distributions of the ratios of level spacings of a rectangular and an Africa-shaped superconducting microwave resonator containing circular scatterers on a triangular grid, so-called Dirac billiards (DBs). The high-precision measurements all
Two deterministic models for Brownian motion are investigated by means of numerical simulations and kinetic theory arguments. The first model consists of a heavy hard disk immersed in a rarefied gas of smaller and lighter hard disks acting as a therm