ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic shear results from the deep lens survey - I: Joint constraints on omega_m and sigma_8 with a two-dimensional analysis

300   0   0.0 ( 0 )
 نشر من قبل Myungkook Jee
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a cosmic shear study from the Deep Lens Survey (DLS), a deep BVRz multi-band imaging survey of five 4 sq. degree fields with two National Optical Astronomy Observatory (NOAO) 4-meter telescopes at Kitt Peak and Cerro Tololo. For both telescopes, the change of the point-spread-function (PSF) shape across the focal plane is complicated, and the exposure-to-exposure variation of this position-dependent PSF change is significant. We overcome this challenge by modeling the PSF separately for individual exposures and CCDs with principal component analysis (PCA). We find that stacking these PSFs reproduces the final PSF pattern on the mosaic image with high fidelity, and the method successfully separates PSF-induced systematics from gravitational lensing effects. We calibrate our shears and estimate the errors, utilizing an image simulator, which generates sheared ground-based galaxy images from deep Hubble Space Telescope archival data with a realistic atmospheric turbulence model. For cosmological parameter constraints, we marginalize over shear calibration error, photometric redshift uncertainty, and the Hubble constant. We use cosmology-dependent covariances for the Markov Chain Monte Carlo analysis and find that the role of this varying covariance is critical in our parameter estimation. Our current non-tomographic analysis alone constrains the Omega_M-sigma_8 likelihood contour tightly, providing a joint constraint of Omega_M=0.262+-0.051 and sigma_8=0.868+-0.071. We expect that a future DLS weak-lensing tomographic study will further tighten these constraints because explicit treatment of the redshift dependence of cosmic shear more efficiently breaks the Omega_M-sigma_8 degeneracy. Combining the current results with the Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) likelihood data, we obtain Omega_M=0.278+-0.018 and sigma_8=0.815+-0.020.



قيم البحث

اقرأ أيضاً

We present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitude r_{lim}~27 (5 sigma), is designed as a pre-cursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five t omographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing >10 sq. deg cosmic shear surveys. Combining the DLS tomography with the 9-year results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives Omega_m=0.293_{-0.014}^{+0.012}, sigma_8=0.833_{-0.018}^{+0.011}, H_0=68.6_{-1.2}^{+1.4} km/s/Mpc, and Omega_b=0.0475+-0.0012 for LCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for LCDM, we obtain the curvature constraint Omega_k=-0.010_{-0.015}^{+0.013} from the DLS+WMAP9 combination, which however is not well constrained when WMAP9 is used alone. The dark energy equation of state parameter w is tightly constrained when Baryonic Acoustic Oscillation (BAO) data are added, yielding w=-1.02_{-0.09}^{+0.10} with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to w=-1.03+-0.03. Our joint constraints are fully consistent with the final Planck results and also the predictions of a LCDM universe.
We use 26 million galaxies from the Dark Energy Survey (DES) Year 1 shape catalogs over 1321 deg$^2$ of the sky to produce the most significant measurement of cosmic shear in a galaxy survey to date. We constrain cosmological parameters in both the f lat $Lambda$CDM and $w$CDM models, while also varying the neutrino mass density. These results are shown to be robust using two independent shape catalogs, two independent photoz calibration methods, and two independent analysis pipelines in a blind analysis. We find a 3.5% fractional uncertainty on $sigma_8(Omega_m/0.3)^{0.5} = 0.782^{+0.027}_{-0.027}$ at 68% CL, which is a factor of 2.5 improvement over the fractional constraining power of our DES Science Verification results. In $w$CDM, we find a 4.8% fractional uncertainty on $sigma_8(Omega_m/0.3)^{0.5} = 0.777^{+0.036}_{-0.038}$ and a dark energy equation-of-state $w=-0.95^{+0.33}_{-0.39}$. We find results that are consistent with previous cosmic shear constraints in $sigma_8$ -- $Omega_m$, and see no evidence for disagreement of our weak lensing data with data from the CMB. Finally, we find no evidence preferring a $w$CDM model allowing $w e -1$. We expect further significant improvements with subsequent years of DES data, which will more than triple the sky coverage of our shape catalogs and double the effective integrated exposure time per galaxy.
We show that the counts of galaxy clusters in future deep cluster surveys can place strong constraints on the matter density, Omega_m, the vacuum energy density, Omega_L, and the normalization of the matter power spectrum, sigma_8. Degeneracies betwe en these parameters are different from those in studies of either high--redshift type Ia Supernovae (SNe), or cosmic microwave background (CMB) anisotropies. Using a mass threshold for cluster detection expected to be typical for upcoming SZE surveys, we find that constraints on Omega_m and sigma_8 at the level of roughly 5% or better can be expected, assuming redshift information is known at least to z=0.5 and in the absence of significant systematic errors. Without information past this redshift, Omega_L is constrained to 25%. With complete redshift information, deep (M_{lim}= 10^{14}h^{-1}{M_sun}), relatively small solid angle (roughly 12 {deg}^2) surveys can further constrain Omega_L to an accuracy of 15%, while large solid angle surveys with ground-based large-format bolometer arrays could measure Omega_L to a precision of 4% or better.
We present measurements of cosmic shear two-point correlation functions (TPCFs) from Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) first-year data, and derived cosmological constraints based on a blind analysis. The HSC first-year shape catalo g is divided into four tomographic redshift bins ranging from $z=0.3$ to 1.5 with equal widths of $Delta z =0.3$. The unweighted galaxy number densities in each tomographic bin are 5.9, 5.9, 4.3, and 2.4 arcmin$^{-2}$ from lower to higher redshifts, respectively. We adopt the standard TPCF estimators, $xi_pm$, for our cosmological analysis, given that we find no evidence of the significant B-mode shear. The TPCFs are detected at high significance for all ten combinations of auto- and cross-tomographic bins over a wide angular range, yielding a total signal-to-noise ratio of 19 in the angular ranges adopted in the cosmological analysis, $7<theta<56$ for $xi_+$ and $28<theta<178$ for $xi_-$. We perform the standard Bayesian likelihood analysis for cosmological inference from the measured cosmic shear TPCFs, including contributions from intrinsic alignment of galaxies as well as systematic effects from PSF model errors, shear calibration uncertainty, and source redshift distribution errors. We adopt a covariance matrix derived from realistic mock catalogs constructed from full-sky gravitational lensing simulations that fully account for survey geometry and measurement noise. For a flat $Lambda$ cold dark matter model, we find $S_8 equiv sigma_8sqrt{Omega_m/0.3}=0.804_{-0.029}^{+0.032}$, and $Omega_m=0.346_{-0.100}^{+0.052}$. We carefully check the robustness of the cosmological results against astrophysical modeling uncertainties and systematic uncertainties in measurements, and find that none of them has a significant impact on the cosmological constraints.
Owing to the mass-sheet degeneracy, cosmic shear maps do not probe directly the Fourier modes of the underlying mass distribution on scales comparable to the survey size and larger. To assess the corresponding effect on attainable cosmological parame ter constraints, we quantify the information on super-survey modes in a lognormal model and, when interpreted as nuisance parameters, their degeneracies to cosmological parameters. Our analytical and numerical calculations clarify the central role of super-sample covariance (SSC) in shaping the statistical power of cosmological observables. Reconstructing the background modes from their non-Gaussian statistical dependence to small scales modes yields the renormalized convergence. This diagonalizes the spectrum covariance matrix, and the information content of the corresponding power spectrum is increased by a factor of two over standard methods. Unfortunately, careful calculation of the Cramer-Rao bound shows that the information recovery can never be made complete, any observable built from shear fields, including optimal sufficient statistics, are subject to severe information loss, typically $80%$ to $90%$ below $ell sim 3000$ for generic cosmological parameters. The lost information can only be recovered from additional, non-shear based data. Our predictions hold just as well for a tomographic analysis, and/or full sky surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا