ﻻ يوجد ملخص باللغة العربية
Sparse matrix vector multiplication (SpMV) is an important kernel in scientific and engineering applications. The previous optimizations are sparse matrix format specific and expose the choice of the best format to application programmers. In this work we develop an auto-tuning framework to bridge gap between the specific optimized kernels and their general-purpose use. We propose an SpMV auto-tuner (SMAT) that provides an unified interface based on compressed sparse row (CSR) to programmers by implicitly choosing the best format and the fastest implementation of any input sparse matrix in runtime. SMAT leverage a data mining model, which is formulated based on a set of performance parameters extracted from 2373 matrices in UF sparse matrix collection, to fast search the best combination. The experiments show that SMAT achieves the maximum performance of 75 GFLOP/s in single-precision and 33 GFLOP/s in double-precision on Intel, and 41 GFLOP/s in single-precision and 34 GFLOP/s in double-precision on AMD. Compared with the sparse functions in MKL library, SMAT runs faster by more than 3 times.
Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPU
Sparse matrix-vector multiplication (SpMV) is a central building block for scientific software and graph applications. Recently, heterogeneous processors composed of different types of cores attracted much attention because of their flexible core con
General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an effici
Sparse matrix-vector multiplication (spMVM) is the most time-consuming kernel in many numerical algorithms and has been studied extensively on all modern processor and accelerator architectures. However, the optimal sparse matrix data storage format
Generalized Sparse Matrix-Matrix Multiplication (SpGEMM) is a ubiquitous task in various engineering and scientific applications. However, inner product based SpGENN introduces redundant input fetches for mismatched nonzero operands, while outer prod