ﻻ يوجد ملخص باللغة العربية
The Interferometric studies of novae in the optical and near-infrared is a nascent but fast emerging field which has begun to provide new and invaluable insights into the nova phenomenon. This is particularly so in the early stages of the eruption when all the relevant physical phenomena are on the scale of milli-arcseconds and thus are amenable to be studied only by interferometric techniques. In this review the instruments and arrays involved in this domain of work are briefly described, followed by a description of the major results obtained so far. A discussion is made of the physical aspects, where the application of interferometric techniques, can bring the most valuable information. Finally, prospects for the near future are discussed.
We review infrared observations of classical and recurrent novae, at wavelengths >3microns, including both broad-band and spectroscopic observations. In recent years infrared spectroscopy in particular has revolutionised our understanding of the nova
Binaries with circumbinary disks are commonly found among optically bright post-AGB stars. Although clearly linked to binary interaction processes, the formation, evolution and fate of these disks are still badly understood. Due to their compactness,
Photometric and spectroscopic results are presented for the Be star X Per/HD 24534 from near-infrared monitoring in 2010-2011. The star is one of a sample of selected Be/X-ray binaries being monitored by us in the near-IR to study correlations betwee
We review the near-infrared properties of classical novae in the J, H and K bands at wavelengths between 1.08 to 2.4 micron. A classification system exists for the early post-outburst optical spectra of novae on the basis of the strength of group of
Novae, which are the sudden visual brightening triggered by runaway thermonuclear burning on the surface of an accreting white dwarf, are fairly common and bright events. Despite their astronomical significance as nearby laboratories for the study of