ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the M-sigma Relation in the Non-Local Universe Using Red QSOs

136   0   0.0 ( 0 )
 نشر من قبل Gabriela Canalizo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a method to measure the M-sigma relation in the non-local universe using dust-obscured QSOs. We present results from a pilot sample of nine 2MASS red QSOs with redshifts 0.14<z<0.37. We find that there is an offset (0.8 dex, on average) between the position of our objects and the local relation for AGN, in the sense that the majority of red QSO hosts have lower velocity dispersions and/or more massive BHs than local galaxies. These results are in agreement with recent studies of AGN at similar and higher redshifts. This could indicate an unusually rapid growth in the host galaxies since z~0.2, if these objects were to land in the local relation at present time. However, the z>0.1 AGN (including our sample and those of previous studies) have significantly higher BH mass than those of local AGN, so a direct comparison is not straightforward. Further, using several samples of local and higher-z AGN, we find a striking trend of an increasing offset with respect to the local M-sigma relation as a function of AGN luminosity, with virtually all objects with log(L_5100/erg s^-1) > 43.6 falling above the relation. Given the relatively small number of AGN at z>0.1 for which there are direct measurements of stellar velocity dispersions, it is impossible at present to determine whether there truly is evolution in M-sigma with redshift. Larger, carefully selected samples of AGN are necessary to disentangle the dependence of M-sigma on mass, luminosity, accretion rates, and redshift.



قيم البحث

اقرأ أيضاً

We examine the possibility that the observed relation between black-hole mass and host-galaxy stellar velocity dispersion (the M-sigma relation) is biased by an observational selection effect, the difficulty of detecting a black hole whose sphere of influence is smaller than the telescope resolution. In particular, we critically investigate recent claims that the M-sigma relation only represents the upper limit to a broad distribution of black-hole masses in galaxies of a given velocity dispersion. We find that this hypothesis can be rejected at a high confidence level, at least for the early-type galaxies with relatively high velocity dispersions (median 268 km/s) that comprise most of our sample. We also describe a general procedure for incorporating observational selection effects in estimates of the properties of the M-sigma relation. Applying this procedure we find results that are consistent with earlier estimates that did not account for selection effects, although with larger error bars. In particular, (i) the width of the M-sigma relation is not significantly increased; (ii) the slope and normalization of the M-sigma relation are not significantly changed; (iii) most or all luminous early-type galaxies contain central black holes at zero redshift. Our results may not apply to late-type or small galaxies, which are not well-represented in our sample.
64 - Brant Robertson 2005
(Abridged) We examine the evolution of the black hole mass - stellar velocity dispersion (M-sigma) relation over cosmic time using simulations of galaxy mergers that include feedback from supermassive black hole growth. We consider mergers of galaxie s varying the properties of the progenitors to match those expected at redshifts z=0-6. We find that the slope of the resulting M-sigma relation is the same at all redshifts considered. For the same feedback efficiency that reproduces the observed amplitude of the M-sigma relation at z=0, there is a weak redshift-dependence to the normalization that results from an increasing velocity dispersion for a given galactic stellar mass. We develop a formalism to connect redshift evolution in the M-sigma relation to the scatter in the local relation at z=0. We show that the scatter in the local relation places severe constraints on the redshift evolution of both the normalization and slope of the M-sigma relation. Furthermore, we demonstrate that cosmic downsizing introduces a black hole mass-dependent dispersion in the M-sigma relation and that the skewness of the distribution about the locally observed M-sigma relation is sensitive to redshift evolution in the normalization and slope. In principle, these various diagnostics provide a method for differentiating between theories for producing the M-sigma relation. In agreement with existing constraints, our simulations imply that hierarchical structure formation should produce the relation with small intrinsic scatter.
Using data from the Sloan Digital Sky Survey (SDSS; data release 7), we have conducted a search for local analogs to the extremely compact, massive, quiescent galaxies that have been identified at z > 2. We show that incompleteness is a concern for s uch compact galaxies, particularly for low redshifts (z < ~0.05) as a result of the SDSS spectroscopic target selection algorithm. We have identified 63 massive red sequence galaxies at 0.066 < z < 0.12 that are smaller than the median size-mass relation by a factor of 2 or more. Consistent with expectations from the virial theorem, the median offset from the mass-velocity dispersion relation for these galaxies is 0.12 dex. We do not find any galaxies with sizes and masses comparable to those observed at z ~ 2, implying a decrease in the comoving number density (at fixed size and mass) by a factor of > 5000. This result cannot be explained by incompleteness: at 0.066 < z <0.12, the SDSS spectroscopic sample should typically be ~75% complete for galaxies with the sizes and masses seen at high redshift, although for the very smallest galaxies it may be as low as ~20%. To confirm that the absence of such compact massive galaxies in SDSS is not a spectroscopic selection effect, we have also looked for such galaxies in the SDSS photometric catalog, using photometric redshifts. While we do find signs of a bias against massive, compact galaxies, this analysis suggests that the SDSS spectroscopic sample is missing at most a few objects in the regime we consider. Accepting the high redshift results, it is clear that massive galaxies must undergo significant structural evolution over z<2 in order to match the population seen in the local universe. Our results suggest that a highly stochastic mechanism like major mergers cannot be the primary driver of this strong size evolution.
We present an analysis of the z ~ 0 morphology-environment relation for 911 bright (M_B < -19) galaxies, matching classical RC3 morphologies to the SDSS-based group catalog of Yang et al. We study how the relative fractions of spirals, lenticulars, a nd ellipticals depend on halo mass over a range of 10^11.7-10^14.8 h^-1 Msol. We pay particular attention to how morphology relates to central (most massive) vs satellite galaxy status. The fraction of galaxies which are elliptical is a strong function of stellar mass; it is also a strong function of halo mass, but only for central galaxies. We interpret this in a scenario where elliptical galaxies are formed, probably via mergers, as central galaxies within their halos; satellite ellipticals are previously central galaxies accreted onto larger halos. The overall fraction of S0 galaxies increases strongly with halo mass, from ~10% to ~70%. We find striking differences between the central and satellites: 20+/-2% of central M_* > 10^10.5 Msol galaxies are S0 regardless of halo mass, but satellite S0 galaxies are only found in massive (> 10^13 h^-1 Msol) halos, where they are 69+/-4% of the M_* > 10^10.5 Msol satellite population. This suggests two channels for S0 formation: one for central galaxies, and another which transforms lower mass (M_* <~ 10^11 Msol) accreted spirals into satellite S0 galaxies in massive halos. Analysis of finer morphological structure (bars and rings in disk galaxies) shows some trends with stellar mass, but none with halo mass; this is consistent with other recent studies which indicate that bars are not strongly influenced by galaxy environment. Radio sources in high-mass central galaxies are common, similarly so for elliptical and S0 galaxies, with a frequency that increases with halo mass. Emission-line AGN (mostly LINERs) are more common in S0s, but show no strong environmental trends (abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا