ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital phases of fermions in an asymmetric optical ladder

225   0   0.0 ( 0 )
 نشر من قبل Xiaopeng Li
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a quantum ladder of interacting fermions with coupled s and p orbitals. Such a model describes dipolar molecules or atoms loaded into a double-well optical lattice, dipole moments being aligned by an external field. The two orbital components have distinct hoppings. The tunneling between them is equivalent to a partial Rashba spin-orbital coupling when the orbital space (s, p) is identified as spanned by pseudo-spin 1/2 states. A rich phase diagram, including incommensurate orbital density wave, pair density wave and other exotic superconducting phases, is proposed with bosonization analysis. In particular, superconductivity is found in the repulsive regime.



قيم البحث

اقرأ أيضاً

Motivated by the experiment [St-Jean {it et al}., Nature Photon. {bf 11}, 651 (2017)] on topological phases with collective photon modes in a zigzag chain of polariton micropillars, we study spinless $p$-orbital fermions with local interorbital hoppi ngs and repulsive interactions between $p_x$ and $p_y$ bands in zigzag optical lattices. We show that spinless $p$-band fermions in zigzag optical lattices can mimic the interacting Su-Schrieffer-Heeger model and the effective transverse field Ising model in the presence of local hoppings. We analytically and numerically discuss the ground-state phases and quantum phase transitions of the model. This work provides a simple scheme to simulate topological phases and the quench dynamics of many-body systems in optical lattices.
The exchange coupling between quantum mechanical spins lies at the origin of quantum magnetism. We report on the observation of nearest-neighbor magnetic spin correlations emerging in the many-body state of a thermalized Fermi gas in an optical latti ce. The key to obtaining short-range magnetic order is a local redistribution of entropy within the lattice structure. This is achieved in a tunable-geometry optical lattice, which also enables the detection of the magnetic correlations. We load a low-temperature two-component Fermi gas with repulsive interactions into either a dimerized or an anisotropic simple cubic lattice. For both systems the correlations manifest as an excess number of singlets as compared to triplets consisting of two atoms with opposite spins. For the anisotropic lattice, we determine the transverse spin correlator from the singlet-triplet imbalance and observe antiferromagnetic correlations along one spatial axis. Our work paves the way for addressing open problems in quantum magnetism using ultracold fermions in optical lattices as quantum simulators.
308 - Edmond Orignac 2016
A boson two--leg ladder in the presence of a synthetic magnetic flux is investigated by means of bosonization techniques and Density Matrix Renormalization Group (DMRG). We follow the quantum phase transition from the commensurate Meissner to the inc ommensurate vortex phase with increasing flux at different fillings. When the applied flux is $rho pi$ and close to it, where $rho$ is the filling per rung, we find a second incommensuration in the vortex state that affects physical observables such as the momentum distribution, the rung-rung correlation function and the spin-spin and charge-charge static structure factors.
Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-orbital liquids. Here we consider tw o-component (spin 1/2) fermionic atoms with strong repulsive interactions on the $p$-band of the optical square lattice. We derive the spin-orbital exchange for quarter filling of the $p$-band when the density fluctuations are suppressed, and show it frustrates the development of long range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the $s$-band.
Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies. We promote the notion of quantum distillation: during the expansion, and in the presence of strongly repulsive interactions, doublons group together, forming a nearly ideal band insulator, which is metastable with a low entropy. We propose that this effect could be used for cooling purposes in experiments with two-component Fermi gases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا