ترغب بنشر مسار تعليمي؟ اضغط هنا

On using Cold Baryogenesis to constrain the Two-Higgs Doublet Model

65   0   0.0 ( 0 )
 نشر من قبل Anders Tranberg
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the creation of the cosmological baryon asymmetry in the Two Higgs Doublet Model. We imagine a situation where the masses of the five Higgs particles and the two Higgs vevs are constrained by collider experiments, and demonstrate how the requirement of successful baryogenesis can be used to further constrain the remaining 4-dimensional parameter space of the model. We numerically compute the asymmetry within the scenario of Cold Electroweak Baryogenesis, which is particularly straightforward to simulate reliably.

قيم البحث

اقرأ أيضاً

Recently we presented the upgrade of our code BSMPT for the calculation of the electroweak phase transition (EWPT) to BSMPT v2 which now includes the computation of the baryon asymmetry of the universe (BAU) in the CP-violating 2-Higgs-Doublet Model (C2HDM). In this paper we use {tt BSMPT v2} to investigate the size of the BAU that is obtained in the C2HDM with the two implemented approaches FH and VIA to derive the transport equations, by taking into account all relevant theoretical and experimental constraints. We identify similarities and differences in the results computed with the two methods. In particular, we analyse the dependence of the obtained BAU on the parameters relevant for successful baryogenesis. Our investigations allow us to pinpoint future directions for improvements both in the computation of the BAU and in possible avenues taken for model building.
We study a mechanism that generates the baryon asymmetry of the Universe during a tachyonic electroweak phase transition. We utilize as sole source of CP violation an operator that was recently obtained from the Standard Model by integrating out the quarks.
98 - Anders Tranberg 2010
Using large scale real-time lattice simulations, we calculate the baryon asymmetry generated at a fast, cold electroweak symmetry breaking transition. CP-violation is provided by the leading effective bosonic term resulting from integrating out the f ermions in the Minimal Standard Model at zero temperature, and performing a covariant gradient expansion [1]. This is an extension of the work presented in [2]. The numerical implementation is described in detail, and we address issues specifically related to using this CP-violating term in the context of Cold Electroweak Baryogenesis. The results support the conclusion of [2], that Standard Model CP-violation may be able to reproduce the observed baryon asymmetry in the Universe in the context of Cold Electroweak Baryogenesis.
The two Higgs bi-doublet left-right symmetric model (2HBDM) as a simple extension of the minimal left-right symmetric model with a single Higgs bi-doublet is motivated to realize both spontaneous P and CP violation while consistent with the low energ y phenomenology without significant fine tuning. By carefully investigating the Higgs potential of the model, we find that sizable CP-violating phases are allowed after the spontaneous symmetry breaking. The mass spectra of the extra scalars in the 2HBDM are significantly different from the ones in the minimal left-right symmetric model. In particular, we demonstrate in the decoupling limit when the right-handed gauge symmetry breaking scale is much higher than the electroweak scale, the 2HBDM decouples into general two Higgs doublet model (2HDM) with spontaneous CP violation and has rich induced sources of CP violation. We show that in the decoupling limit, it contains extra light Higgs bosons with masses around electroweak scale, which can be directly searched at the ongoing LHC and future ILC experiments.
Models of asymmetric dark matter (ADM) seek to explain the apparent coincidence between the present-day mass densities of visible and dark matter, $Omega_{mathrm{DM}} simeq 5Omega_{mathrm{VM}}$. However, most ADM models only relate the number densiti es of visible and dark matter without motivating the similar particle masses. We expand upon a recent work that obtained a natural mass relationship in a mirror matter ADM model with two Higgs doublets in each sector, by looking to implement dark electroweak baryogenesis as the means of asymmetry generation. We explore two aspects of the mechanism: the nature of the dark electroweak phase transition, and the transfer of particle asymmetries between the sectors by the use of portal interactions. We find that both aspects can be implemented successfully for various regions of the parameter space. We also analyse one portal interaction -- the neutron portal -- in greater detail, in order to satisfy the observational constraints on dark radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا