ﻻ يوجد ملخص باللغة العربية
We address the problem of adaptive minimax density estimation on $bR^d$ with $bL_p$--loss on the anisotropic Nikolskii classes. We fully characterize behavior of the minimax risk for different relationships between regularity parameters and norm indexes in definitions of the functional class and of the risk. In particular, we show that there are four different regimes with respect to the behavior of the minimax risk. We develop a single estimator which is (nearly) optimal in orderover the complete scale of the anisotropic Nikolskii classes. Our estimation procedure is based on a data-driven selection of an estimator from a fixed family of kernel estimators.
We study the estimation, in Lp-norm, of density functions defined on [0,1]^d. We construct a new family of kernel density estimators that do not suffer from the so-called boundary bias problem and we propose a data-driven procedure based on the Golde
This paper presents minimax rates for density estimation when the data dimension $d$ is allowed to grow with the number of observations $n$ rather than remaining fixed as in previous analyses. We prove a non-asymptotic lower bound which gives the wor
This paper studies the minimax rate of nonparametric conditional density estimation under a weighted absolute value loss function in a multivariate setting. We first demonstrate that conditional density estimation is impossible if one only requires t
Let $Omega$ be a bounded closed convex set in ${mathbb R}^d$ with non-empty interior, and let ${cal C}_r(Omega)$ be the class of convex functions on $Omega$ with $L^r$-norm bounded by $1$. We obtain sharp estimates of the $epsilon$-entropy of ${cal C
We consider the problem of estimating the predictive density of future observations from a non-parametric regression model. The density estimators are evaluated under Kullback--Leibler divergence and our focus is on establishing the exact asymptotics