ترغب بنشر مسار تعليمي؟ اضغط هنا

Validation of techniques to mitigate copper surface contamination in CUORE

100   0   0.0 ( 0 )
 نشر من قبل Cremonesi Oliviero
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we describe the background challenges for the CUORE experiment posed by surface contamination of inert detector materials such as copper, and present three techniques explored to mitigate these backgrounds. Using data from a dedicated test apparatus constructed to validate and compare these techniques we demonstrate that copper surface contamination levels better than 10E-07 - 10E-08 Bq/cm2 are achieved for 238U and 232Th. If these levels are reproduced in the final CUORE apparatus the projected 90% C.L. upper limit on the number of background counts in the region of interest is 0.02-0.03 counts/keV/kg/y depending on the adopted mitigation technique.

قيم البحث

اقرأ أيضاً

The CUORE Crystal Validation Runs (CCVRs) have been carried out since the end of 2008 at the Gran Sasso National Laboratories, in order to test the performances and the radiopurity of the TeO$_2$ crystals produced at SICCAS (Shanghai Institute of Cer amics, Chinese Academy of Sciences) for the CUORE experiment. In this work the results of the first 5 validation runs are presented. Results have been obtained for bulk contaminations and surface contaminations from several nuclides. An extrapolation to the CUORE background has been performed.
We describe in detail the methods used to obtain the lower bound on the lifetime of neutrinoless double-beta ($0 ubetabeta$) decay in $^{130}$Te and the associated limit on the effective Majorana mass of the neutrino using the CUORE-0 detector. CUORE -0 is a bolometric detector array located at the Laboratori Nazionali del Gran Sasso that was designed to validate the background reduction techniques developed for CUORE, a next-generation experiment scheduled to come online in 2016. CUORE-0 is also a competitive $0 ubetabeta$ decay search in its own right and functions as a platform to further develop the analysis tools and procedures to be used in CUORE. These include data collection, event selection and processing, as well as an evaluation of signal efficiency. In particular, we describe the amplitude evaluation, thermal gain stabilization, energy calibration methods, and the analysis event selection used to create our final $0 ubetabeta$ decay search spectrum. We define our high level analysis procedures, with emphasis on the new insights gained and challenges encountered. We outline in detail our fitting methods near the hypothesized $0 ubetabeta$ decay peak and catalog the main sources of systematic uncertainty. Finally, we derive the $0 ubetabeta$ decay half-life limits previously reported for CUORE-0, $T^{0 u}_{1/2}>2.7times10^{24}$ yr, and in combination with the Cuoricino limit, $T^{0 u}_{1/2}>4.0times10^{24}$ yr.
CUORE is a 741 kg array of 988 TeO$_2$ bolometeric crystals designed to search for the neutrinoless double beta decay of $^{130}$Te and other rare processes. CUORE has been taking data since summer 2017, and as of summer 2018 collected a total of 86. 3 kg$cdot$yr of TeO$_2$ exposure. Based on this exposure, we were able to set a limit on the $0 ubetabeta$ half-life of $^{130}$Te of $T^{0 u}_{1/2}>1.5times10^{25}$ yr at 90% C.L. At this conference, we showed the decomposition of the CUORE background and were able to extract a $^{130}$Te $2 ubetabeta$ half-life of $T_{1/2}^{2 u}=[7.9pm0.1 mathrm{(stat.)}pm0.2 mathrm{(syst.)}]times10^{20}$ yr. This is the most precise measurement of this half-life and is consistent with previous measurements.
We report the results of a search for neutrinoless double-beta decay in a 9.8~kg$cdot$yr exposure of $^{130}$Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest a re $5.1pm 0.3{rm~keV}$ FWHM and $0.058 pm 0.004,(mathrm{stat.})pm 0.002,(mathrm{syst.})$~counts/(keV$cdot$kg$cdot$yr), respectively. The median 90%~C.L. lower-limit sensitivity of the experiment is $2.9times 10^{24}~{rm yr}$ and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of $^{130}$Te and place a Bayesian lower bound on the decay half-life, $T^{0 u}_{1/2}>$~$ 2.7times 10^{24}~{rm yr}$ at 90%~C.L. Combining CUORE-0 data with the 19.75~kg$cdot$yr exposure of $^{130}$Te from the Cuoricino experiment we obtain $T^{0 u}_{1/2} > 4.0times 10^{24}~mathrm{yr}$ at 90%~C.L.~(Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, $m_{betabeta}< 270$ -- $760~mathrm{meV}$.
The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first t ime to a high-sensitivity search for a lepton-number--violating process: $^{130}$Te neutrinoless double-beta decay. Examining a total TeO$_2$ exposure of 86.3 kg$cdot$yr, characterized by an effective energy resolution of (7.7 $pm$ 0.5) keV FWHM and a background in the region of interest of (0.014 $pm$ 0.002) counts/(keV$cdot$kg$cdot$yr), we find no evidence for neutrinoless double-beta decay. The median statistical sensitivity of this search is $7.0times10^{24}$ yr. Including systematic uncertainties, we place a lower limit on the decay half-life of $T^{0 u}_{1/2}$($^{130}$Te) > $1.3times 10^{25}$ yr (90% C.L.). Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find $T^{0 u}_{1/2}$($^{130}$Te) > $1.5times 10^{25}$ yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find $m_{betabeta}<(110 - 520)$ meV, where the range reflects the nuclear matrix element estimates employed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا