ترغب بنشر مسار تعليمي؟ اضغط هنا

A Semiconductor Under Insulator Technology in Indium Phosphide

25   0   0.0 ( 0 )
 نشر من قبل Khaled Mnaymneh Khaled Mnaymneh
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This Letter introduces a Semiconductor-Under-Insulator (SUI) technology in InP for designing strip waveguides that interface InP photonic crystal membrane structures. Strip waveguides in InP-SUI are supported under an atomic layer deposited insulator layer in contrast to strip waveguides in silicon supported on insulator. We show a substantial improvement in optical transmission when using InP-SUI strip waveguides interfaced with localized photonic crystal membrane structures when compared with extended photonic crystal waveguide membranes. Furthermore, SUI makes available various fiber-coupling techniques used in SOI, such as sub-micron coupling, for planar membrane III-V systems.

قيم البحث

اقرأ أيضاً

Photonic crystal nanocavities at visible wavelengths are fabricated in a high refractive index (n>3.2) gallium phosphide membrane. The cavities are probed via a cross-polarized reflectivity measurement and show resonances at wavelengths as low as 645 nm at room temperature, with quality factors between 500 and 1700 for modes with volumes 0.7(lambda/n)^3. These structures could be employed for submicron scale optoelectronic devices in the visible, and for coupling to novel emitters with resonances in the visible such as nitrogen vacancy centers, and bio- and organic molecules.
In this paper we present our progress towards the opto-electronic characterization of indium phosphide (InP) nanowire transistors at milli-Kelvin (mK) temperatures. First, we have investigated the electronic transport of the InP nanowires by current- voltage (I-V) spectroscopy as a function of temperature from 300 K down to 40 K. Second, we show the successful operation of a red light emitting diode (LED) at liquid-Helium (and base) temperature to be used for opto-electronic device characterization.
We designed, fabricated and tested gallium phosphide (GaP) nano-waveguides for second harmonic generation (SHG). We demonstrate SHG in the visible range around 655 nm using low power continuous-wave pump in the optical communication O-band. Our struc tures utilize modal phase matching, such that lower order eigenmodes of the pump are phase matched to higher order eigenmodes of the second harmonic. We observe phase matched SHG for different combinations of interacting modes by varying the widths of the waveguides and tuning the wavelength of the pump. The presented results contribute to the development of integrated photonic platforms with efficient nonlinear wave-mixing processes for classical and quantum applications.
We demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effi ciency $P_{rm out}/P_{rm in, coupled}^2 = 430%/{rm W}$. The large electronic band gap of GaP minimizes absorption loss, allowing efficient conversion. Our results are promising for integrated, low-power light sources and on-chip reduction of input power in other nonlinear processes.
Topological insulators (TIs) hold great promises for new spin-related phenomena and applications thanks to the spin texture of their surface states. However, a versatile platform allowing for the exploitation of these assets is still lacking due to t he difficult integration of these materials with the mainstream Si-based technology. Here, we exploit germanium as a substrate for the growth of Bi$_2$Se$_3$, a prototypical TI. We probe the spin properties of the Bi$_2$Se$_3$/Ge pristine interface by investigating the spin-to-charge conversion taking place in the interface states by means of a non-local detection method. The spin population is generated by optical orientation in Ge, and diffuses towards the Bi$_2$Se$_3$ which acts as a spin detector. We compare the spin-to-charge conversion in Bi$_2$Se$_3$/Ge with the one taking place in Pt in the same experimental conditions. Notably, the sign of the spin-to-charge conversion given by the TI detector is reversed compared to the Pt one, while the efficiency is comparable. By exploiting first-principles calculations, we ascribe the sign reversal to the hybridization of the topological surface states of Bi$_2$Se$_3$ with the Ge bands. These results pave the way for the implementation of highly efficient spin detection in TI-based architectures compatible with semiconductor-based platforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا