ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of Hepatic Lesions using the Matching Metric

69   0   0.0 ( 0 )
 نشر من قبل Aaron Adcock
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional persistent homology, the matching metric (also called the bottleneck distance), and a support vector machine. We present our classification results on a dataset of 132 lesions that have been outlined and annotated by radiologists. We find that topological features are useful in the classification of hepatic lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent homology in this application.



قيم البحث

اقرأ أيضاً

Fundoscopic images are often investigated by ophthalmologists to spot abnormal lesions to make diagnoses. Recent successes of convolutional neural networks are confined to diagnoses of few diseases without proper localization of lesion. In this paper , we propose an efficient annotation method for localizing lesions and a CNN architecture that can classify an individual finding and localize the lesions at the same time. Also, we introduce a new loss function to guide the network to learn meaningful patterns with the guidance of the regional annotations. In experiments, we demonstrate that our network performed better than the widely used network and the guidance loss helps achieve higher AUROC up to 4.1% and superior localization capability.
Data scarcity and class imbalance are two fundamental challenges in many machine learning applications to healthcare. Breast cancer classification in mammography exemplifies these challenges, with a malignancy rate of around 0.5% in a screening popul ation, which is compounded by the relatively small size of lesions (~1% of the image) in malignant cases. Simultaneously, the prevalence of screening mammography creates a potential abundance of non-cancer exams to use for training. Altogether, these characteristics lead to overfitting on cancer cases, while under-utilizing non-cancer data. Here, we present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms. With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs, as necessary for mammography. When augmenting the original training set with the GAN-generated samples, we find a significant improvement in malignancy classification performance on a test set of real mammogram patches. Overall, the empirical results of our algorithm and the relevance to other medical imaging paradigms point to potentially fruitful further applications.
How do the neural networks distinguish two images? It is of critical importance to understand the matching mechanism of deep models for developing reliable intelligent systems for many risky visual applications such as surveillance and access control . However, most existing deep metric learning methods match the images by comparing feature vectors, which ignores the spatial structure of images and thus lacks interpretability. In this paper, we present a deep interpretable metric learning (DIML) method for more transparent embedding learning. Unlike conventional metric learning methods based on feature vector comparison, we propose a structural matching strategy that explicitly aligns the spatial embeddings by computing an optimal matching flow between feature maps of the two images. Our method enables deep models to learn metrics in a more human-friendly way, where the similarity of two images can be decomposed to several part-wise similarities and their contributions to the overall similarity. Our method is model-agnostic, which can be applied to off-the-shelf backbone networks and metric learning methods. We evaluate our method on three major benchmarks of deep metric learning including CUB200-2011, Cars196, and Stanford Online Products, and achieve substantial improvements over popular metric learning methods with better interpretability. Code is available at https://github.com/wl-zhao/DIML
We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution ov er the points. Each request has to be matched to a free server, with cost equal to the distance. The goal is to minimize the expected total cost of the matching. Such stochastic arrival models have been widely studied for the maximization variants of the online matching problem; however, the only known result for the minimization problem is a tight $O(log n)$-competitiveness for the random-order arrival model. This is in contrast with the adversarial model, where an optimal competitive ratio of $O(log n)$ has long been conjectured and remains a tantalizing open question. In this paper, we show improved results in the i.i.d arrival model. We show how the i.i.d model can be used to give substantially better algorithms: our main result is an $O((log log log n)^2)$-competitive algorithm in this model. Along the way we give a $9$-competitive algorithm for the line and tree metrics. Both results imply a strict separation between the i.i.d model and the adversarial and random order models, both for general metrics and these much-studied metrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا