ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics in online social networks

127   0   0.0 ( 0 )
 نشر من قبل Przemyslaw Grabowicz Mr
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

An increasing number of todays social interactions occurs using online social media as communication channels. Some online social networks have become extremely popular in the last decade. They differ among themselves in the character of the service they provide to online users. For instance, Facebook can be seen mainly as a platform for keeping in touch with close friends and relatives, Twitter is used to propagate and receive news, LinkedIn facilitates the maintenance of professional contacts, Flickr gathers amateurs and professionals of photography, etc. Albeit different, all these online platforms share an ingredient that pervades all their applications. There exists an underlying social network that allows their users to keep in touch with each other and helps to engage them in common activities or interactions leading to a better fulfillment of the services purposes. This is the reason why these platforms share a good number of functionalities, e.g., personal communication channels, broadcasted status updates, easy one-step information sharing, news feeds exposing broadcasted content, etc. As a result, online social networks are an interesting field to study an online social behavior that seems to be generic among the different online services. Since at the bottom of these services lays a network of declared relations and the basic interactions in these platforms tend to be pairwise, a natural methodology for studying these systems is provided by network science. In this chapter we describe some of the results of research studies on the structure, dynamics and social activity in online social networks. We present them in the interdisciplinary context of network science, sociological studies and computer science.



قيم البحث

اقرأ أيضاً

The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability.
Despite the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by th e local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter -- the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree.
How is online social media activity structured in the geographical space? Recent studies have shown that in spite of earlier visions about the death of distance, physical proximity is still a major factor in social tie formation and maintenance in vi rtual social networks. Yet, it is unclear, what are the characteristics of the distance dependence in online social networks. In order to explore this issue the complete network of the former major Hungarian online social network is analyzed. We find that the distance dependence is weaker for the online social network ties than what was found earlier for phone communication networks. For a further analysis we introduced a coarser granularity: We identified the settlements with the nodes of a network and assigned two kinds of weights to the links between them. When the weights are proportional to the number of contacts we observed weakly formed, but spatially based modules resembling to the borders of macro-regions, the highest level of regional administration in the country. If the weights are defined relative to an uncorrelated null model, the next level of administrative regions, counties are reflected.
Social network is a main tunnel of rumor spreading. Previous studies are concentrated on a static rumor spreading. The content of the rumor is invariable during the whole spreading process. Indeed, the rumor evolves constantly in its spreading proces s, which grows shorter, more concise, more easily grasped and told. In an early psychological experiment, researchers found about 70% of details in a rumor were lost in the first 6 mouth-to-mouth transmissions cite{TPR}. Based on the facts, we investigate rumor spreading on social networks, where the content of the rumor is modified by the individuals with a certain probability. In the scenario, they have two choices, to forward or to modify. As a forwarder, an individual disseminates the rumor directly to its neighbors. As a modifier, conversely, an individual revises the rumor before spreading it out. When the rumor spreads on the social networks, for instance, scale-free networks and small-world networks, the majority of individuals actually are infected by the multi-revised version of the rumor, if the modifiers dominate the networks. Our observation indicates that the original rumor may lose its influence in the spreading process. Similarly, a true information may turn to be a rumor as well. Our result suggests the rumor evolution should not be a negligible question, which may provide a better understanding of the generation and destruction of a rumor.
It has recently become possible to record detailed social interactions in large social systems with high resolution. As we study these datasets, human social interactions display patterns that emerge at multiple time scales, from minutes to months. O n a fundamental level, understanding of the network dynamics can be used to inform the process of measuring social networks. The details of measurement are of particular importance when considering dynamic processes where minute-to-minute details are important, because collection of physical proximity interactions with high temporal resolution is difficult and expensive. Here, we consider the dynamic network of proximity-interactions between approximately 500 individuals participating in the Copenhagen Networks Study. We show that in order to accurately model spreading processes in the network, the dynamic processes that occur on the order of minutes are essential and must be included in the analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا