ﻻ يوجد ملخص باللغة العربية
The amplification of a surface electromagnetic wave by means of ultrarelativistic monoenergetic electron bunch running over the flat plasma surface in absence of a magnetic field is studied theoretically. It is shown that when the ratio of electron bunch number density to plasma electron number density multiplied by a powered to 5 relativity factor is much higher than 1, i.e $gamma^5 n_b/n_p>> 1$, the saturation field of the surface electromagnetic wave induced by trapping of bunch electrons gains the magnitude: $E_x=B_yapprox 0.16 frac{omega_p m c}{e} (frac{2n_b}{gamma^2 n_p})^{1/7}$ and does not approache the surface electromagnetic wave front breakdown threshold in plasma. The surface electromagnetic wave saturation energy density in plasma can exceed the electron bunch energy density. Here, we discuss the possibility of generation of superpower Teraherz radiation on a basis of such scheme.
Radiation generated by the passage of a monoenergetic electron bunch above the surface wave excited in plane interface between homogeneous media with different dielectric constants is investigated. For the surface wave of general profile the radiatio
Plasma waves generated in the wake of intense, relativistic laser or particle beams can accelerate electron bunches to giga-electronvolt (GeV) energies in centimetre-scale distances. This allows the realization of compact accelerators having emerging
Relativistic wakes produced by intense laser or particle beams propagating through plasmas are being considered as accelerators for next generation of colliders and coherent light sources. Such wakes have been shown to accelerate electrons and positr
We propose a new approach to high-intensity laser-driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward-scattering of an incident laser pulse can be in a longest acceleration phase with an
In recent decades, different types of plasma sources have been used for various types of plasma processing, such as, etching and thin film deposition. The critical parameter for effective plasma processing is high plasma density. One type of high den