ﻻ يوجد ملخص باللغة العربية
Supergiant fast X-ray transients (SFXTs) are a class of high-mass X-ray binaries with possible counterparts in the high energy gamma rays. The Swift SFXT Project has conducted a systematic investigation of the properties of SFTXs on timescales ranging from minutes to years and in several intensity states (from bright flares, to intermediate intensity states, and down to almost quiescence). We also performed broad-band spectroscopy of outbursts, and intensity-selected spectroscopy outside of outbursts. We demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we assessed the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present the most recent results from our investigation. The spectroscopic and, most importantly, timing properties of SFXTs we have uncovered with Swift will serve as a guide in search for the high energy emission from these enigmatic objects.
Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) hosting a neutron star and an OB supergiant companion. We examine the available Swift data, as well as other new or archival/serendipitous data, on three sources: IGR J1740
We present the most recent results from our investigation on Supergiant Fast X-ray Transients, a class of High-Mass X-ray Binaries, with a possible counterpart in the gamma-ray energy band. Since 2007 Swift has contributed to this new field by detect
We report here on the most recent results obtained on a new class of High Mass X-ray Binaries, the Supergiant Fast X-ray Transients. Since October 2007, we have been performing a monitoring campaign with Swift of four SFXTs (IGRJ17544-2916, XTEJ1739-
For the first time, Swift is giving us the opportunity to study supergiant fast X-ray transients (SFXTs) throughout all phases of their life: outbursts, intermediate level, and quiescence. We present our intense monitoring of four SFXTs, observed 2-3
We present two years of intense Swift monitoring of three SFXTs, IGR J16479-4514, XTE J1739-302, and IGR J17544-2619 (since October 2007). Out-of-outburst intensity-based X-ray (0.3-10keV) spectroscopy yields absorbed power laws with by hard photon i