ترغب بنشر مسار تعليمي؟ اضغط هنا

On a class of inverse electrostatic and elasticity problems

71   0   0.0 ( 0 )
 نشر من قبل Iosif Polterovich
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the inverse electrostatic and elasticity problems associated with Poisson and Navier equations. The uniqueness of solutions of these problems is proved for piecewise constant electric charge and internal stress distributions having a checkered structure: they are constant on rectangular blocks. Such distributions appear naturally in practical applications. We also discuss computational challenges arising in the numerical implementation of our method.

قيم البحث

اقرأ أيضاً

344 - Li Li 2021
We first formulate an inverse problem for a linear fractional Lame system. We determine the Lame parameters from exterior partial measurements of the Dirichlet-to-Neumann map. We further study an inverse obstacle problem as well as an inverse problem for a nonlinear fractional Lame system. Our arguments are based on the unique continuation property for the fractional operator as well as the associated Runge approximation property.
Intrinsic nonlinear elasticity deals with the deformations of elastic bodies as isometric immersions of Riemannian manifolds into the Euclidean spaces (see Ciarlet [9,10]). In this paper, we study the rigidity and continuity properties of elastic bod ies for the intrinsic approach to nonlinear elasticity. We first establish a geometric rigidity estimate for mappings from a Riemannian manifold to a sphere (in the spirit of Friesecke--James--M{u}ller [20]), which is the first result of this type for the non-Euclidean case as far as we know. Then we prove the asymptotic rigidity of elastic membranes under suitable geometric conditions. Finally, we provide a simplified geometric proof of the continuous dependence of deformations of elastic bodies on the Cauchy--Green tensors and second fundamental forms, which extends the Ciarlet--Mardare theorem in [17] to arbitrary dimensions and co-dimensions.
175 - G. Toscani , M. Zanella 2021
We study the relaxation to equilibrium for a class linear one-dimensional Fokker-Planck equations characterized by a particular subcritical confinement potential. An interesting feature of this class of Fokker-Planck equations is that, for any given probability density $e(x)$, the diffusion coefficient can be built to have $e(x)$ as steady state. This representation of the equilibrium density can be fruitfully used to obtain one-dimensional Wirtinger-type inequalities and to recover, for a sufficiently regular density $e(x) $, a polynomial rate of convergence to equilibrium.Numerical results then confirm the theoretical analysis, and allow to conjecture that convergence to equilibrium with positive rate still holds for steady states characterized by a very slow polynomial decay at infinity.
We derive continuum limits of atomistic models in the realm of nonlinear elasticity theory rigorously as the interatomic distances tend to zero. In particular we obtain an integral functional acting on the deformation gradient in the continuum theory which depends on the underlying atomistic interaction potentials and the lattice geometry. The interaction potentials to which our theory applies are general finite range models on multilattices which in particular can also account for multi-pole interactions and bond-angle dependent contributions. Furthermore, we discuss the applicability of the Cauchy-Born rule. Our class of limiting energy densities consists of general quasiconvex functions and the class of linearized limiting energies consistent with the Cauchy-Born rule consists of general quadratic forms not restricted by the Cauchy relations.
We review previous work on spectral flow in connection with certain self-adjoint model operators ${A(t)}_{tin mathbb{R}}$ on a Hilbert space $mathcal{H}$, joining endpoints $A_pm$, and the index of the operator $D_{A}^{}= (d/d t) + A$ acting in $L^2( mathbb{R}; mathcal{H})$, where $A$ denotes the operator of multiplication $(A f)(t) = A(t)f(t)$. In this article we review what is known when these operators have some essential spectrum and describe some new results in terms of associated spectral shift functions. We are especially interested in extensions to non-Fredholm situations, replacing the Fredholm index by the Witten index, and use a particular $(1+1)$-dimensional model setup to illustrate our approach based on spectral shift functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا