ترغب بنشر مسار تعليمي؟ اضغط هنا

Updated Analysis of a Dark Galaxy and its Blue Companion in the Virgo Cloud HI 1225+01

365   0   0.0 ( 0 )
 نشر من قبل Yoshiki Matsuoka
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HI 1225+01 is an intergalactic gas cloud located on the outskirts of Virgo cluster. Its main components are two large clumps of comparable HI masses (M_HI ~ 10^9 Msun) separated by about 100 kpc. One of the clumps hosts a blue low-surface-brightness galaxy J1227+0136, while the other has no identified stellar emission and is sometimes referred to as a promising candidate of a dark galaxy, an optically invisible massive intergalactic system. We present a deep optical image covering the whole HI 1225+01 structure for the first time, as well as a collection of archival data from ultraviolet to far-infrared (IR) spectral region of the brightest knot R1 in J1227+0136. We find that R1 has a young stellar population of age 10-100 Myr and mass ~ 10^6 Msun, near-IR excess brightness which may point to the presence of hot dust with color temperature ~ 600 K, and relatively faint mid- to far-IR fluxes corresponding to the dust mass of up to ~ 100 Msun. Overall, it seems to share the general properties with low-metallicity blue compact dwarf galaxies. On the other hand, no optical counterpart to the other clump is found in our deepest-ever image. Now the limiting surface brightness reaches down to R_AB > 28 mag/arcsec2 for any emission extended over 10 (comparable to R1), which is more than one hundred times fainter than the brightest part of the companion galaxy J1227+0136.



قيم البحث

اقرأ أيضاً

128 - B. W. Holwerda 2011
We explore the quantified morphology of atomic hydrogen (HI) disks in the Virgo cluster. These galaxies display a wealth of phenomena in their Hi morphology, e.g., tails, truncation and warps. These morphological disturbances are related to the ram-p ressure stripping and tidal interaction that galaxies undergo in this dense cluster environment. To quantify the morphological transformation of the HI disks, we compute the morphological parameters of CAS, Gini, and M20 and our own GM for 51 galaxies in 48 HI column density maps from the VIVA project. Some morphological phenomena can be identified in this space of relatively low resolution HI data. Truncation of the HI disk can be cleanly identified via the Concentration parameter (C<1) and Concentration can also be used to identify HI deficient disks (1<C<5). Tidal interaction is typically identified using combinations of these morphological parameters, applied to (optical) images of galaxies. We find that some selection criteria (Gini-M20, Asymmetry, and a modified Concentration-M20) are still applicable for the coarse (~15 FWHM) VIVA HI data. The phenomena of tidal tails can be reasonably well identified using the Gini-M20 criterion (60% of galaxies with tails identified but with as many contaminants). Ram-pressure does move HI disks into and out of most of our interaction criteria: the ram-pressure sequence identified by Vollmer et al. (2009) tracks into and out of some of these criteria (Asymmetry based and the Gini-M20 selections, but not the Concentration-M20 or the GM based ones). Therefore, future searches for interaction using HI morphologies should take ram-pressure into account as a mechanism to disturb HI disks enough to make them appear as gravitationally interacting. One mechanism would be to remove all the HI deficient (C<5) disks from the sample, as these have undergone more than one HI removal mechanism.
44 - Robert Minchin 2005
VIRGOHI21 is an HI source detected in the Virgo Cluster survey of Davies et al. (2004) which has a neutral hydrogen mass of 10^8 M_solar and a velocity width of Delta V_20 = 220 km/s. From the Tully-Fisher relation, a galaxy with this velocity width would be expected to be 12th magnitude or brighter; however deep CCD imaging has failed to turn up a counterpart down to a surface-brightness level of 27.5 B mag/sq. arcsec. The HI observations show that it is extended over at least 16 kpc which, if the system is bound, gives it a minimum dynamical mass of ~10^11 M_solar and a mass to light ratio of M_dyn/L_B > 500 M_solar/L_solar. If it is tidal debris then the putative parents have vanished; the remaining viable explanation is that VIRGOHI21 is a dark halo that does not contain the expected bright galaxy. This object was found because of the low column density limit of our survey, a limit much lower than that achieved by all-sky surveys such as HIPASS. Further such sensitive surveys might turn up a significant number of the dark matter halos predicted by Dark Matter models.
Intrinsic galaxy alignments are a source of bias for weak lensing measurements as well as a tool for understanding galaxy formation and evolution. In this work, we measure the alignment of shapes of satellite galaxies, in galaxy groups, with respect to the brightest group galaxy (BGG), as well as alignments of the BGG shape with the satellite positions, using the highly complete Galaxy And Mass Assembly (GAMA) spectroscopic survey and deep imaging from the Kilo Degree Survey. We control systematic errors with dedicated image simulations and measure accurate shapes using the DEIMOS shape measurement method. We find a significant satellite radial alignment signal, which vanishes at large separations from the BGG. We do not identify any strong trends of the signal with galaxy absolute magnitude or group mass. The alignment signal is dominated by red satellites. We also find that the outer regions of galaxies are aligned more strongly than their inner regions, by varying the radial weight employed during the shape measurement process. This behaviour is evident for both red and blue satellites. BGGs are also found to be aligned with satellite positions, with this alignment being stronger when considering the innermost satellites, using red BGGs and the shape of the outer region of the BGG. Lastly, we measure the global intrinsic alignment signal in the GAMA sample for two different radial weight functions and find no significant difference.
We present results from Suzaku Key Project observations of the Virgo Cluster, the nearest galaxy cluster to us, mapping its X-ray properties along four long `arms extending beyond the virial radius. The entropy profiles along all four azimuths increa se with radius, then level out beyond $0.5r_{200}$, while the average pressure at large radii exceeds Planck Sunyaev-Zeldovich measurements. These results can be explained by enhanced gas density fluctuations (clumping) in the clusters outskirts. Using a standard Navarro, Frenk and White (1997) model, we estimate a virial mass, radius, and concentration parameter of $M_{200}=1.05pm0.02times10^{14}$ M$_odot$, $r_{200}=974.1pm5.7$ kpc, and $c = 8.8 pm0.2$, respectively. The inferred cumulative baryon fraction exceeds the cosmic mean at $rsim r_{200}$ along the major axis, suggesting enhanced gas clumping possibly sourced by a candidate large-scale structure filament along the north-south direction. The Suzaku data reveal a large-scale sloshing pattern, with two new cold fronts detected at radii of 233 kpc and 280 kpc along the western and southern arms, respectively. Two high-temperature regions are also identified 1 Mpc towards the south and 605 kpc towards the west of M87, likely representing shocks associated with the ongoing cluster growth. Although systematic uncertainties in measuring the metallicity for low temperature plasma remain, the data at large radii appear consistent with a uniform metal distribution on scales of $sim 90times180$ kpc and larger, providing additional support for the early chemical enrichment scenario driven by galactic winds at redshifts of 2-3.
We have characterized a sample of extended X-ray sources in the A1367 galaxy cluster that lack optical counterparts. The sources are galaxy size and have an average total mass of $1.3times10^{11}$ solar masses. The average hot gas mass is $3.0times10 ^{9}$ solar masses and the average X-ray luminosity is $4.3times10^{41}$ erg cm$^{-2}$ s$^{-1}$. Analysis of a composite source spectrum indicates the X-ray emission is thermal, with temperature of 1.25 - 1.45 keV and has low metallicity, 0.026 - 0.067 solar. The average hot gas radius (12.7 kpc) is well matched to nominal stripping radius. We argue that this optically dark, X-ray bright galaxy population forms by a sequence of stripping followed by heating and mixing with the intracluster medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا