ﻻ يوجد ملخص باللغة العربية
We report the results of Australia Telescope Compact Array (ATCA) observations of the Westerlund~1 (Wd1) region in the SiO v=1, J=1-0 and H2O 6(16)-5(23) maser lines, and we also report the analysis of maser properties of red supergiants (RSGs) associated with 6 massive clusters including Wd1. The primary purpose of this research is to explore possibilities of using maser emission for investigating the nature of massive clusters and associated RSGs. The SiO v=1, J=1-0 and H2O 6(16)-5(23) maser lines are detected toward 2 of 4 known RSGs in Wd1. The large velocity ranges of maser emission are consistent with the RSG status. RSGs with maser emission tend to exhibit redder log (F21/F12) and [K-12.13] colors compared to RSGs with no maser emission. The mass-loss rates derived from dust radiative transfer modeling suggest that RSGs with maser emission tend to exhibit larger mass-loss rates compared to RSGs with no maser emission. In an extended sample of 57 RSGs in 6 massive clusters, detections in the SiO line tend to homogeneously distribute in absolute luminosity L, whereas those in the H2O line tend to distribute in a region with large L values.
We have selected the positions of 54 6.7GHz methanol masers from the Methanol Multibeam Survey catalogue, covering a range of longitudes between $20^{circ}$ and $34^{circ}$ of the Galactic Plane. These positions were mapped in the J=3-2 transition of
Galactic, young massive star clusters are approximately coeval aggregates of stars, close enough to resolve the individual stars, massive enough to have produced large numbers of massive stars, and young enough for these stars to be in a pre-supernov
We report new 5.5 GHz radio observations of the massive star cluster Westerlund 1, taken by the Australia Telescope Compact Array, detecting nine of the ten yellow hypergiants (YHGs) and red supergiants (RSGs) within the cluster. Eight of nine source
We report the detection of new 12.178, 12.229, 20.347, and 23.121 GHz methanol masers in the massive star-forming region G358.93-0.03, which are flaring on similarly short timescales (days) as the 6.668 GHz methanol masers also associated with this s
Red supergiants (RSGs) are a He-burning phase in the evolution of moderately massive stars (10-25 solar masses). For many years, the assumed physical properties of these stars placed them at odds with the predictions of evolutionary theory. We have r