ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a magnetic field in the rapidly-rotating O-type secondary of the colliding-wind binary HD 47129 (Plasketts star)

128   0   0.0 ( 0 )
 نشر من قبل Gregg Wade
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of a strong, organized magnetic field in the secondary component of the massive O8III/I+O7.5V/III double-lined spectroscopic binary system HD 47129 (Plasketts star), in the context of the Magnetism in Massive Stars (MiMeS) survey. Eight independent Stokes $V$ observations were acquired using the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope and the Narval spectropolarimeter at the Telescope Bernard Lyot. Using Least-Squares Deconvolution we obtain definite detections of signal in Stokes $V$ in 3 observations. No significant signal is detected in the diagnostic null ($N$) spectra. The Zeeman signatures are broad and track the radial velocity of the secondary component; we therefore conclude that the rapidly-rotating secondary component is the magnetized star. Correcting the polarized spectra for the line and continuum of the (sharp-lined) primary, we measured the longitudinal magnetic field from each observation. The longitudinal field of the secondary is variable and exhibits extreme values of $-810pm 150$ G and $+680pm 190$ G, implying a minimum surface dipole polar strength of $2850pm 500$ G. In contrast, we derive an upper limit ($3sigma$) to the primarys surface magnetic field of 230 G. The combination of a strong magnetic field and rapid rotation leads us to conclude that the secondary hosts a centrifugal magnetosphere fed through a magnetically confined wind. We revisit the properties of the optical line profiles and X-ray emission - previously interpreted as a consequence of colliding stellar winds - in this context. We conclude that HD 47129 represents a heretofore unique stellar system - a close, massive binary with a rapidly rotating, magnetized component - that will be a rich target for further study.



قيم البحث

اقرأ أيضاً

We report the detection of a strong, reversing magnetic field and variable H-alpha emission in the bright helium-weak star HD 176582 (HR 7185). Spectrum, magnetic and photometric variability of the star are all consistent with a precisely determined period of 1.5819840 +/- 0.0000030 days which we assume to be the rotation period of the star. From the magnetic field curve, and assuming a simple dipolar field geometry, we derive a polar field strength of approximately 7 kG and a lower limit of 52 degrees for the inclination of the rotation axis. However, based on the behaviour of the H-alpha emission we adopt a large inclination angle of 85 degrees and this leads to a large magnetic obliquity of 77 degrees. The H-alpha emission arises from two distinct regions located at the intersections of the magnetic and rotation equators and which corotate with the star at a distance of about 3.5 R* above its surface. We estimate that the emitting regions have radial and meridional sizes on the order of 2 R* and azimuthal extents (perpendicular to the magnetic equator) of less than approximately 0.6 R*. HD 176582 therefore appears to show many of the cool magnetospheric phenomena as that displayed by other magnetic helium-weak and helium-strong stars such as the prototypical helium-strong star sigma Ori E. The observations are consistent with current models of magnetically confined winds and rigidly-rotating magnetospheres for magnetic Bp stars.
The radio spectra of main-sequence stars remain largely unconstrained due to the lack of observational data to inform stellar atmosphere models. As such, the dominant emission mechanisms at long wavelengths, how they vary with spectral type, and how much they contribute to the expected brightness at a given radio wavelength are still relatively unknown for most spectral types. We present radio continuum observations of Altair, a rapidly rotating A-type star. We observed Altair with NOEMA in 2018 and 2019 at 1.34 mm, 2.09 mm, and 3.22 mm and with the VLA in 2019 at 6.7 mm and 9.1 mm. In the radio spectra, we see a brightness temperature minimum at millimeter wavelengths followed by a steep rise to temperatures larger than the optical photosphere, behavior that is unexpected for A-type stars. We use these data to produce the first sub-millimeter to centimeter spectrum of a rapidly rotating A-type star informed by observations. We generated both PHOENIX and KINICH-PAKAL model atmospheres and determine the KINICH-PAKAL model better reproduces Altairs radio spectrum. The synthetic spectrum shows a millimeter brightness temperature minimum followed by significant emission over that of the photosphere at centimeter wavelengths. Together, these data and models show how the radio spectrum of an A-type star can reveal the presence of a chromosphere, likely induced by rapid rotation, and that a Rayleigh Jeans extrapolation of the stellar photosphere is not an adequate representation of a stars radio spectrum.
We present the results of a study of the star HD 34736. The spectropolarimetric observations carried out at the 6-m telescope showed the presence of a strong variable longitudinal magnetic field, exceeding -4500 G. The analysis of the HIPPARCOS photo metry gives a set of possible periods of the brightness variability of the star, of which 0.3603 days is preferred. The variable radial velocity of spectral lines of the star and some signatures of lines of at least one other component show that HD 34736 is a double short-period system. Modeling of the spectra allowed us to estimate the effective temperature $T_{eff}$ of the stars (13 700 and 11 500 K) and their projected rotational velocities $vsin i$ (73 and $geq90$ km s$^{-1}$). The analysis of all the available information about the star allows us to hypothesize that the object of study is a close, possibly interacting binary system.
HD 93129A was classified as the earliest O-type star in the Galaxy (O2~If*) and is considered as the prototype of its spectral class. However, interferometry shows that this object is a binary system, while recent observations even suggest a triple c onfiguration. None of the previous spectral analyses of this object accounted for its multiplicity. With new high-resolution UV and optical spectra, we have the possibility to reanalyze this key object, taking its binary nature into account for the first time. We aim to derive the fundamental parameters and the evolutionary status of HD 93129A, identifying the contributions of both components to the composite spectrum. We analyzed UV and optical observations acquired with the Hubble Space Telescope and ESOs Very Large Telescope. A multiwavelength analysis of the system was performed using the latest version of the Potsdam Wolf-Rayet model atmosphere code. Despite the similar spectral types of the two components, we are able to find signatures from each of the components in the combined spectrum, which allows us to estimate the parameters of both stars. We derive $log (L/L_odot) = 6.15$, $T_{textrm{eff}}=52$ kK, and $log dot{M}=-4.7 [M_odottext{yr}^{-1}]$ for the primary Aa, and $log (L/L_odot)=5.58$, $T_{textrm{eff}}=45$ kK, and $logdot{M}=-5.8 [M_odottext{yr}^{-1}]$ for the secondary Ab. Even when accounting for the binary nature, the primary of HD 93129A is found to be one of the hottest and most luminous O stars in our Galaxy. Based on the theoretical decomposition of the spectra, we assign spectral types O2~If* and O3~III(f*) to components Aa and Ab, respectively. While we achieve a good fit for a wide spectral range, specific spectral features are not fully reproduced. The data are not sufficient to identify contributions from a hypothetical third component in the system.
We present a three-dimensional simulation of the corona of an FK Com-type rapidly rotating G giant using a magnetohydrodynamic model that was originally developed for the solar corona in order to capture the more realistic, non-potential coronal stru cture. We drive the simulation with surface maps for the radial magnetic field obtained from a stellar dynamo model of the FK Com system. This enables us to obtain the coronal structure for different field topologies representing different periods of time. We find that the corona of such an FK Com-like star, including the large scale coronal loops, is dominated by a strong toroidal component of the magnetic field. This is a result of part of the field being dragged by the radial outflow, while the other part remains attached to the rapidly rotating stellar surface. This tangling of the magnetic field,in addition to a reduction in the radial flow component, leads to a flattening of the gas density profile with distance in the inner part of the corona. The three-dimensional simulation provides a global view of the coronal structure. Some aspects of the results, such as the toroidal wrapping of the magnetic field, should also be applicable to coronae on fast rotators in general, which our study shows can be considerably different from the well-studied and well-observed solar corona. Studying the global structure of such coronae should also lead to a better understanding of their related stellar processes, such as flares and coronal mass ejections, and in particular, should lead to an improved understanding of mass and angular momentum loss from such systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا