ترغب بنشر مسار تعليمي؟ اضغط هنا

Jet Fragmentation Function Moments in Heavy Ion Collisions

91   0   0.0 ( 0 )
 نشر من قبل Matteo Cacciari
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of a jets fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area based techniques proposed in the past for jet p_ts. Furthermore, complications due to correlations between background-fluctuation contributions to the jets p_t and to its particle content are easily corrected for.

قيم البحث

اقرأ أيضاً

Direct photons have been proposed as a promising signature for the quark-gluon plasma (QGP) formation in relativistic heavy-ion collisions. Recently WA98 presented the first data on direct photons in Pb+Pb-collisions at SPS. At the same time RHIC sta rted with its experimental program. The discovery of the QGP in these experiments relies on a comparison of data with theoretical predictions for QGP signals. In the case of direct photons new results for the production rates of thermal photons from the QGP and a hot hadron gas as well as for prompt photons from initial hard parton scatterings have been proposed recently. Based on these rates a variety of different hydrodynamic models, describing the space-time evolution of the fireball, have been adopted for calculating the direct photon spectra. The results have been compared to the WA98 data and predictions for RHIC and LHC have been made. So far the conclusions of the various models are controversial. The aim of the present review is to provide a comprehensive and up-to-date survey and status report on the experimental and theoretical aspects of direct photons in relativistic heavy-ion collisions.
We propose a new observable, called zeal, to analyze events with jets in heavy ion collisions. The observable measures how a thermal medium affects the multiplicity and distribution of energetic particles in a jet. Using few known models for energy l oss and jet quenching, we demonstrate its capability to distinguish the physics of these models.
Relativistic heavy-ion experiments have observed similar quenching effects for (prompt) $D$ mesons compared to charged hadrons for transverse momenta larger than 6-8~GeV, which remains a mystery since heavy quarks typically lose less energies in quar k-gluon plasma than light quarks and gluons. Recent measurements of the nuclear modification factors of $B$ mesons and $B$-decayed $D$ mesons by the CMS Collaboration provide a unique opportunity to study the flavor hierarchy of jet quenching. Using a linear Boltzmann transport model combined with hydrodynamics simulation, we study the energy loss and nuclear modification for heavy and light flavor jets in high-energy nuclear collisions. By consistently taking into account both quark and gluon contributions to light and heavy flavor hadron productions within a next-to-leading order perturbative QCD framework, we obtain, for the first time, a satisfactory description of the experimental data on the nuclear modification factors for charged hadrons, $D$ mesons, $B$ mesons and $B$-decayed $D$ mesons simultaneously over a wide range of transverse momenta (8-300~GeV). This presents a solid solution to the flavor puzzle of jet quenching and constitutes a significant step towards the precision study of jet-medium interaction. Our study predicts that at transverse momenta larger than 30-40~GeV, $B$ mesons also exhibit similar suppression effects to charged hadrons and $D$ mesons, which may be tested by future measurements.
We develop the theoretical framework needed to study the distribution of hadrons with general polarization inside jets, with and without transverse momentum measured with respect to the standard jet axis. The key development in this paper, referred t o as polarized jet fragmentation functions, opens up new opportunities to study both collinear and transverse momentum dependent (TMD) fragmentation functions. As two examples of the developed framework, we study longitudinally polarized collinear $Lambda$ and transversely polarized TMD $Lambda$ production inside jets in both $pp$ and $ep$ collisions. We find that both observables have high potential in constraining spin-dependent fragmentation functions with sizeable asymmetries predicted, in particular, at the future Electron-Ion Collider.
153 - Varun Vaidya 2020
I develop an Effective Field Theory (EFT) framework to compute jet substructure observables for heavy ion collision experiments. As an illustration, I consider dijet events that accompany the formation of a weakly coupled Quark Gluon Plasma(QGP) medi um in a heavy ion collision and look at an observable insensitive to jet selection bias: the simultaneous measurement of jet mass along with the transverse momentum imbalance between the jets that are groomed to remove soft radiation. Treating the jet as an open quantum system, I write down a factorization formula within the SCET(Soft Collinear Effective Theory) framework in the forward scattering regime. The physics of the medium is encoded in a universal soft field correlator while the jet-medium interaction is captured by a medium induced jet function. The factorization formula leads to a Lindblad type equation for the evolution of the reduced density matrix of the jet in the Markovian approximation. The solution for this equation allows a resummation of large logarithms that arise due to the final state measurements imposed while simultaneously summing over multiple incoherent interactions of the jet with the medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا