ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for chaotic behaviour in pulsar spin-down rates

35   0   0.0 ( 0 )
 نشر من قبل Andrew Seymour Mr.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present evidence for chaotic dynamics within the spin-down rates of 17 pulsars originally presented by Lyne et al. Using techniques that allow us to re-sample the original measurements without losing structural information, we have searched for evidence of a strange attractor in the time series of frequency derivatives for each of the 17 pulsars. We demonstrate the effectiveness of our methods by applying them to a component of the Lorenz and Rossler attractors that were sampled with similar cadence to the pulsar time series. Our measurements of correlation dimension and Lyapunov exponent show that the underlying behaviour appears to be driven by a strange attractor with approximately three governing non-linear differential equations. This is particularly apparent in the case of PSR B1828$-$11 where a correlation dimension of 2.06pm0.03 and a Lyapunov exponent of $(4.0pm0.3)times10^{-4}$ inverse days were measured. These results provide an additional diagnostic for testing future models of this behaviour.

قيم البحث

اقرأ أيضاً

We probe ultra-low-frequency gravitational waves (GWs) with statistics of spin-down rates of milli-second pulsars (MSPs) by a method proposed in our prevous work (Yonemaru et al. 2016). The considered frequency range is $10^{-12}{rm Hz} lesssim f_{rm GW} lesssim 10^{-10}$Hz, which cannot be accessed by the conventional pulsar timing array. The effect of such low-frequency GWs appears as a bias to spin-down rates which has a quadrupole pattern in the sky. We use the skewness of the spin-down rate distribution and the number of MSPs with negative spin-down rates to search for the bias induced by GWs. Applying this method to 149 MSPs selected from the ATNF pulsar catalog, we derive upper bounds on the time derivative of the GW amplitudes of $dot{h} < 6.2 times 10^{-18}~{rm sec}^{-1}$ and $dot{h} < 8.1 times 10^{-18}~{rm sec}^{-1}$ in the directions of the Galactic Center and M87, respectively. Approximating the GW amplitude as $dot{h} sim 2 pi f_{rm GW} h$, the bounds translate into $h < 3 times 10^{-9}$ and $h < 4 times 10^{-9}$, respectively, for $f_{rm GW} = 1/(100~{rm yr})$. Finally, we give the implications to possible super-massive black hole binaries at these sites.
Pulsars are famed for their rotational clock-like stability and their highly-repeatable pulse shapes. However, it has long been known that there are unexplained deviations (often termed timing noise) from the rate at which we predict these clocks sho uld run. We show that timing behaviour often results from typically two different spin-down rates. Pulsars switch abruptly between these states, often quasi-periodically, leading to the observed spin-down patterns. We show that for six pulsars the timing noise is correlated with changes in the pulse shape. Many pulsar phenomena including mode-changing, nulling, intermittency, pulse shape variability and timing noise are therefore linked and caused by changes in the pulsars magnetosphere. We consider the possibility that high-precision monitoring of pulse profiles could lead to the formation of highly-stable pulsar clocks.
We report on the phase-coherent timing analysis of the accreting millisecond X-ray pulsar IGR J17591-2342, using Neutron Star Interior Composition Explorer (NICER) data taken during the outburst of the source between 2018 August 15 and 2018 October 1 7. We obtain an updated orbital solution of the binary system. We investigate the evolution of the neutron star spin frequency during the outburst, reporting a refined estimate of the spin frequency and the first estimate of the spin frequency derivative ($dot{ u} sim -7times 10^{-14}$ Hz s$^{-1}$), confirmed independently from the modelling of the fundamental frequency and its first harmonic. We further investigate the evolution of the X-ray pulse phases adopting a physical model that accounts for the accretion material torque as well as the magnetic threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. From this analysis we estimate the neutron star magnetic field $B_{eq} = 2.8(3)times10^{8}$ G. Finally, we investigate the pulse profile dependence on energy finding that the observed behaviour of the pulse fractional amplitude and lags as a function of energy are compatible with a thermal Comptonisation of the soft photons emitted from the neutron star caps.
Interpreting the oscillations of massive and intermediate mass stars remains a challenging task. In fast rotators, the oscillation spectrum of p-modes is a superposition of sub-spectra which correspond to different types of modes, among which island modes and chaotic modes are expected to be the most visible. In the case of island modes, a semi-analytic formula describing the asymptotic behavior of island modes has been obtained previously. We study the properties of high frequency chaotic p-modes in a polytropic model. Unexpected peaks appear in the frequency autocorrelations of the spectra. Our goal is to find a physical interpretation for these peaks and also to provide an overview of the mode properties. We use the 2D oscillation code TOP to produce the modes and acoustic ray simulations to explore the wave properties in the asymptotic regime. Using the tools developed in the field of quantum chaos (or wave chaos), we derive an expression for the frequency autocorrelation involving the travel time of acoustic rays. Chaotic mode spectra were previously thought to be irregular, i. e. described only through their statistical properties. Our analysis shows the existence, in chaotic mode spectra, of a pseudo large separation. This means that chaotic modes are organized in series, such that the modes in each series follow a nearly regular frequency spacing. The pseudo large separation of chaotic modes is very close to the large separation of island modes. Its value is related to the sound speed averaged over the meridional plane of the star. In addition to the pseudo large separation, other correlations appear in the numerically calculated spectra. We explain their origin by the trapping of acoustic rays near the stable islands.
We investigate gravitational waves with sub-nanoHz frequencies ($10^{-11}$ Hz $lesssim f_{rm GW} lesssim 10^{-9}$ Hz) from the spatial distribution of the spin-down rates of milli-second pulsars. As we suggested in Yonemaru et al. 2018, gravitational waves from a single source induces the bias in the observed spin-down rates of pulsars depending on the relative direction between the source and pulsar. To improve the constraints on the time derivative of gravitational-wave amplitude obtained in our previous work (Kumamoto et al. 2019), we adopt a more sophisticated statistical method called the Mann-Whitney U test. Applying our method to the ATNF pulsar catalogue, we first found that the current data set is consistent with no GW signal from any direction in the sky. Then, we estimate the effective angular resolution of our method to be $(66~{rm deg})^2$ by studying the probability distribution of the test statistic. Finally, we investigate gravitational-wave signal from the Galactic Centre and M87 and, comparing simulated mock data sets with the real pulsar data, we obtain the upper bounds on the time derivative as $dot{h}_{rm GC} < 8.9 times 10^{-19} {rm s}^{-1}$ for the Galactic Centre and $dot{h}_{rm M87} < 3.3 times 10^{-19} {rm s}^{-1}$ for M87, which are stronger than the ones obtained in Kumamoto et al. 2019 by factors of 7 and 25, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا