ﻻ يوجد ملخص باللغة العربية
We present evidence for chaotic dynamics within the spin-down rates of 17 pulsars originally presented by Lyne et al. Using techniques that allow us to re-sample the original measurements without losing structural information, we have searched for evidence of a strange attractor in the time series of frequency derivatives for each of the 17 pulsars. We demonstrate the effectiveness of our methods by applying them to a component of the Lorenz and Rossler attractors that were sampled with similar cadence to the pulsar time series. Our measurements of correlation dimension and Lyapunov exponent show that the underlying behaviour appears to be driven by a strange attractor with approximately three governing non-linear differential equations. This is particularly apparent in the case of PSR B1828$-$11 where a correlation dimension of 2.06pm0.03 and a Lyapunov exponent of $(4.0pm0.3)times10^{-4}$ inverse days were measured. These results provide an additional diagnostic for testing future models of this behaviour.
We probe ultra-low-frequency gravitational waves (GWs) with statistics of spin-down rates of milli-second pulsars (MSPs) by a method proposed in our prevous work (Yonemaru et al. 2016). The considered frequency range is $10^{-12}{rm Hz} lesssim f_{rm
Pulsars are famed for their rotational clock-like stability and their highly-repeatable pulse shapes. However, it has long been known that there are unexplained deviations (often termed timing noise) from the rate at which we predict these clocks sho
We report on the phase-coherent timing analysis of the accreting millisecond X-ray pulsar IGR J17591-2342, using Neutron Star Interior Composition Explorer (NICER) data taken during the outburst of the source between 2018 August 15 and 2018 October 1
Interpreting the oscillations of massive and intermediate mass stars remains a challenging task. In fast rotators, the oscillation spectrum of p-modes is a superposition of sub-spectra which correspond to different types of modes, among which island
We investigate gravitational waves with sub-nanoHz frequencies ($10^{-11}$ Hz $lesssim f_{rm GW} lesssim 10^{-9}$ Hz) from the spatial distribution of the spin-down rates of milli-second pulsars. As we suggested in Yonemaru et al. 2018, gravitational