ترغب بنشر مسار تعليمي؟ اضغط هنا

Topology of Minimal Walking Technicolor

195   0   0.0 ( 0 )
 نشر من قبل Ed Bennett
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a lattice study of the topological susceptibility and instanton size distribution of the $su{2}$ gauge theory with two adjoint Dirac fermions (also known as Minimal Walking Technicolor), which is known to be in the conformal window. In the theory deformed with a small mass term, by drawing a comparison with the pure gauge theory, we find that topological observables are decoupled from the fermion dynamics. This provides further evidence for the infrared conformality of the theory. A study of the instanton size distribution shows that this quantity can be used to detect the onset of finite size effects.



قيم البحث

اقرأ أيضاً

Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor theory not at odds with precision data.
We study gravitational waves from the first-order electroweak phase transition in the $SU(N_c)$ gauge theory with $N_f/N_cgg 1$ (large $N_f$ QCD) as a candidate for the walking technicolor, which is modeled by the $U(N_f)times U(N_f)$ linear sigma mo del with classical scale symmetry (without mass term), particularly for $N_f=8$ (one-family model). This model exhibits spontaneous breaking of the scale symmetry as well as the $U(N_f)times U(N_f)$ radiatively through the Coleman-Weinberg mechanism $grave{a}$ la Gildener-Weinberg, thus giving rise to a light pseudo dilaton (techni-dilaton) to be identified with the 125 GeV Higgs. This model possess a strong first-order electroweak phase transition due to the resultant Coleman-Weinberg type potential. We estimate the bubble nucleation that exhibits an ultra supercooling and then the signal for a stochastic gravitational wave produced via the strong first-order electroweak phase transition. We show that the amplitude can be reached to the expected sensitivities of the LISA.
We provide a pedagogical introduction to extensions of the Standard Model in which the Higgs is composite. These extensions are known as models of dynamical electroweak symmetry breaking or, in brief, Technicolor. Material covered includes: motivatio ns for Technicolor, the construction of underlying gauge theories leading to minimal models of Technicolor, the comparison with electroweak precision data, the low energy effective theory, the spectrum of the states common to most of the Technicolor models, the decays of the composite particles and the experimental signals at the Large Hadron Collider. The level of the presentation is aimed at readers familiar with the Standard Model but who have little or no prior exposure to Technicolor. Several extensions of the Standard Model featuring a composite Higgs can be reduced to the effective Lagrangian introduced in the text. We establish the relevant experimental benchmarks for Vanilla, Running, Walking, and Custodial Technicolor, and a natural fourth family of leptons, by laying out the framework to discover these models at the Large Hadron Collider.
We investigate chiral and conformal properties of the lattice QCD with eight flavors (Nf=8) through meson spectrum using the Highly Improved Staggered Quark (HISQ) action. We also compare our results with those of Nf=12 and Nf=4 which we study on the same systematics. We find that the decay constant F_pi of the pseudoscalar meson pion is non-zero, with its mass M_pi consistent with zero, both in the chiral limit extrapolation of the chiral perturbation theory (ChPT). We also measure other quantities which we find are in accord with the pi data results: The rho meson mass is consistent with non-zero in the chiral limit, and so is the chiral condensate, with its value neatly coinciding with that from the Gell-Mann-Oakes-Renner relation in the chiral limit. Thus our data for the Nf=8 QCD are consistent with the spontaneously broken chiral symmetry. Remarkably enough, while the Nf=8 data near the chiral limit are well described by the ChPT, those for the relatively large fermion bare mass m_f away from the chiral limit actually exhibit a finite-size hyperscaling relation, suggesting a large anomalous dimension gamma_m ~ 1. This implies that there exists a remnant of the infrared conformality, and suggests that a typical technicolor (one-family model) as modeled by the Nf=8 QCD can be a walking technicolor theory having an approximate scale invariance with large anomalous dimension gamma_m ~ 1.
Motivated by recent progress on many flavor QCD on a lattice, we investigate conformal/walking dynamics by using Schwinger-Dyson (SD) equation within an improved ladder approximation for two-loop running coupling. By numerically solving the SD equati on, we obtain a pole mass $m_{p}$, pion decay constant $f_{pi}$, and investigate the chiral symmetry breaking and mass anomalous dimension $gamma_{m}$ in the presence of IR cutoffs $Lambda_{mathrm{IR}}$. We find that the chiral symmetry breaking is suppressed if IR cutoff $Lambda_{mathrm{IR}}$ becomes larger than the critical value near the dynamical mass ($Lambda_{mathrm{IR}}$ $simeq m_{D}$) In the conformal phase the $gamma_{m}$ is strongly suppressed by IR cutoffs for $Lambda _{mathrm{IR}}$ $simeq m_{p}$. We, then, obtain finite size hyperscaling (FSS) relation by adapting a linearized approximation for the SD equation, and examine the $gamma_{m}$ The results offer valuable insight and suggestion for analyses in lattice gauge theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا