ترغب بنشر مسار تعليمي؟ اضغط هنا

PUCHEROS Early Science: A New Be+sdO Candidate

133   0   0.0 ( 0 )
 نشر من قبل Thomas Rivinius
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the first scientific results with the recently commissioned PUCHEROS spectrograph, mounted at the 50cm telescope of the Pontificia Universidad Catolica near Santiago, Chile. A hitherto unknown candidate Be+sdO binary was identified, omicron Pup. If confirmed, it would be the fourth member of this class. Such stars have obtained their rapid rotation through binary mass transfer and now consist of a Be star and a hot subdwarf.



قيم البحث

اقرأ أيضاً

Schneider et al. (2020) presented the discovery of WISEA J041451.67-585456.7 and WISEA J181006.18-101000.5, which appear to be the first examples of extreme T-type subdwarfs (esdTs; metallicity <= -1 dex, T_eff <= 1400 K). Here we present new discove ries and follow-up of three T-type subdwarf candidates, with an eye toward expanding the sample of such objects with very low metallicity and extraordinarily high kinematics, properties that suggest membership in the Galactic halo. Keck/NIRES near-infrared spectroscopy of WISEA J155349.96+693355.2, a fast-moving object discovered by the Backyard Worlds: Planet 9 citizen science project, confirms that it is a mid-T subdwarf. With H_W2 = 22.3 mag, WISEA J155349.96+693355.2 has the largest W2 reduced proper motion among all spectroscopically confirmed L and T subdwarfs, suggesting that it may be kinematically extreme. Nevertheless, our modeling of the WISEA J155349.96+693355.2 near-infrared spectrum indicates that its metallicity is only mildly subsolar. In analyzing the J155349.96+693355.2 spectrum, we present a new grid of low-temperature, low-metallicity model atmosphere spectra. We also present the discoveries of two new esdT candidates, CWISE J073844.52-664334.6 and CWISE J221706.28-145437.6, based on their large motions and colors similar to those of the two known esdT objects. Finding more esdT examples is a critical step toward mapping out the spectral sequence and observational properties of this newly identified population.
The emission-line Be star HD 215227 lies within the positional error circle of the newly identified gamma-ray source AGL J2241+4454. We present new blue spectra of the star, and we point out the morphological and variability similarities to other Be binaries. An analysis of the available optical photometry indicates a variation with a period of 60.37 +/- 0.04 d, which may correspond to an orbital modulation of the flux from the disk surrounding the Be star. The distance to the star of 2.6 kpc and its relatively large Galactic latitude suggest that the binary was ejected from the plane by a supernova explosion that created the neutron star or black hole companion. The binary and runaway properties of HD 215227 make it an attractive candidate as the optical counterpart of AGL J2241+4454 and as a new member of the small class of gamma-ray emitting binaries.
We report the discovery of a new totally-eclipsing binary (RA=06:40:29.11; Dec=+38:56:52.2; J=2000.0; Rmax=17.2 mag) with an sdO primary and a strongly irradiated red dwarf companion. It has an orbital period of Porb=0.187284394(11) d and an optical eclipse depth in excess of 5 magnitudes. We obtained two low-resolution classification spectra with GTC/OSIRIS and ten medium-resolution spectra with WHT/ISIS to constrain the properties of the binary members. The spectra are dominated by H Balmer and He II absorption lines from the sdO star, and phase-dependent emission lines from the irradiated companion. A combined spectroscopic and light curve analysis implies a hot subdwarf temperature of Teff(spec) = 55 000 +/- 3000K, surface gravity of log g(phot) = 6.2 +/- 0.04 (cgs) and a He abundance of log(nHe/nH) = -2.24 +/- 0.40. The hot sdO star irradiates the red-dwarf companion, heating its substellar point to about 22 500K. Surface parameters for the companion are difficult to constrain from the currently available data: the most remarkable features are the strong H Balmer and C II-III lines in emission. Radial velocity estimates are consistent with the sdO+dM classification. The photometric data do not show any indication of sdO pulsations with amplitudes greater than 7mmag, and Halpha-filter images do not provide evidence of the presence of a planetary nebula associated with the sdO star.
The Kepler Mission, launched on Mar 6, 2009 was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just forty-three days of data along with gr ound-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants.
The rapidly rotating Be star phi Persei was spun up by mass and angular momentum transfer from a now stripped-down, hot subdwarf companion. Here we present the first high angular resolution images of phi Persei made possible by new capabilities in lo ngbaseline interferometry at near-IR and visible wavelengths. We observed phi Persei with the MIRC and VEGA instruments of the CHARA Array. Additional MIRC-only observations were performed to track the orbital motion of the companion, and these were fit together with new and existing radial velocity measurements of both stars to derive the complete orbital elements and distance. The hot subdwarf companion is clearly detected in the near-IR data at each epoch of observation with a flux contribution of 1.5% in the H band, and restricted fits indicate that its flux contribution rises to 3.3% in the visible. A new binary orbital solution is determined by combining the astrometric and radial velocity measurements. The derived stellar masses are 9.6+-0.3Msol and 1.2+-0.2Msol for the Be primary and subdwarf secondary, respectively. The inferred distance (186 +- 3 pc), kinematical properties, and evolutionary state are consistent with membership of phi Persei in the alpha Per cluster. From the cluster age we deduce significant constraints on the initial masses and evolutionary mass transfer processes that transformed the phi Persei binary system. The interferometric data place strong constraints on the Be disk elongation, orientation, and kinematics, and the disk angular momentum vector is coaligned with and has the same sense of rotation as the orbital angular momentum vector. The VEGA visible continuum data indicate an elongated shape for the Be star itself, due to the combined effects of rapid rotation, partial obscuration of the photosphere by the circumstellar disk, and flux from the bright inner disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا