ﻻ يوجد ملخص باللغة العربية
The purpose of our study is to understand the mathematical origin in real space of modulated and damped sinusoidal peaks observed in cosmic microwave background radiation anisotropies. We use the theory of the Fourier transform to connect localized features of the two-point correlation function in real space to oscillations in the power spectrum. We also illustrate analytically and by means of Monte Carlo simulations the angular correlation function for distributions of filled disks with fixed or variable radii capable of generating oscillations in the power spectrum. While the power spectrum shows repeated information in the form of multiple peaks and oscillations, the angular correlation function offers a more compact presentation that condenses all the information of the multiple peaks into a localized real space feature. We have seen that oscillations in the power spectrum arise when there is a discontinuity in a given derivative of the angular correlation function at a given angular distance. These kinds of discontinuities do not need to be abrupt in an infinitesimal range of angular distances but may also be smooth, and can be generated by simply distributing excesses of antenna temperature in filled disks of fixed or variable radii on the sky, provided that there is a non-null minimum radius and/or the maximum radius is constrained.
Starting from the construction of the free quantum scalar field of mass $mgeq 0$ we give mathematically precise and rigoro
We investigate the statistics of stationary points in the sum of squares of $N$ Gaussian random fields, which we call a chi-squared field. The behavior of such a field at a point is investigated, with particular attention paid to the formation of top
The Boussinesq equations are known since the end of the XIXst century. However, the proliferation of various textsc{Boussinesq}-type systems started only in the second half of the XXst century. Today they come under various flavours depending on the
The late-time growth of large scale structures (LSS) is imprinted in the CMBR anisotropy through the Integrated Sachs Wolfe (ISW) effect. This is perceived to be a very important observational probe of dark energy. Future observations of redshifted 2
We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen a