ﻻ يوجد ملخص باللغة العربية
We carry out local three dimensional (3D) hydrodynamic simulations of planet-disk interaction in stratified disks with varied thermodynamic properties. We find that whenever the Brunt-Vaisala frequency (N) in the disk is nonzero, the planet exerts a strong torque on the disk in the vicinity of the planet, with a reduction in the traditional torque cutoff. In particular, this is true for adiabatic perturbations in disks with isothermal density structure, as should be typical for centrally irradiated protoplanetary disks. We identify this torque with buoyancy waves, which are excited (when N is non-zero) close to the planet, within one disk scale height from its orbit. These waves give rise to density perturbations with a characteristic 3D spatial pattern which is in close agreement with the linear dispersion relation for buoyancy waves. The torque due to these waves can amount to as much as several tens of per cent of the total planetary torque, which is not expected based on analytical calculations limited to axisymmetric or low-m modes. Buoyancy waves should be ubiquitous around planets in the inner, dense regions of protoplanetary disks, where they might possibly affect planet migration.
High resolution ALMA observations revealed a variety of rich substructures in numerous protoplanetary disks. These structures consist of rings, gaps and asymmetric features. It is debated whether planets can be accounted for these substructures in th
Gravitational coupling between young planets and their parent disks is often explored using numerical simulations, which typically treat the disk thermodynamics in a highly simplified manner. In particular, many studies adopt the locally isothermal a
We investigate a repulsion mechanism between two low-mass planets migrating in a protoplanetary disk, for which the relative migration switches from convergent to divergent. This mechanism invokes density waves emitted by one planet transferring angu
While numerical simulations have been playing a key role in the studies of planet-disk interaction, testing numerical results against observations has been limited so far. With the two directly imaged protoplanets embedded in its circumstellar disk,
Context. Structures in debris disks induced by planetdisk interaction are promising to provide valuable constraints on the existence and properties of embedded planets. Aims. We investigate the observability of structures in debris disks induced by p