ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Energy Neutrino Astronomy: Status and prospects for cosmic-ray physics

88   0   0.0 ( 0 )
 نشر من قبل Veronique Van Elewyck
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Van Elewyck




اسأل ChatGPT حول البحث

Neutrino astronomy has entered an exciting time with the completion of the first km3-scale neutrino telescope at the South Pole (IceCube) and the successful operation of the first under-sea neutrino telescope in the Mediterranean (Antares). This new generation of experiments is approaching the sensitivity levels required to explore at least part of the current landscape of neutrino flux predictions from astrophysical sources, bringing neutrino astronomy on the verge of its first discovery. This contribution presents the current status and latest results of the operating neutrino telescopes, with a particular emphasis on the link with the phenomenology of high-energy cosmic rays.

قيم البحث

اقرأ أيضاً

74 - V. Berezinsky 2011
The short review of theoretical aspects of ultra high energy (UHE) neutrinos. The accelerator sources, such as Supernovae remnants, Gamma Ray Bursts, AGN etc are discussed. The top-down sources include Topological Defects (TDs), Superheavy Dark Matte r (SHDM) and Mirror Matter. The diffuse fluxes are considered accordingly as that of cosmogenic and top-down neutrinos. Much attention is given to the cascade upper limit to the diffuse neutrino fluxes in the light of Fermi-LAT data on diffuse high energy gamma radiation. This is most general and rigorous upper limit, valid for both cosmogenic and top-down models. At present upper limits from many detectors are close to the cascade upper limit, and 5 yr IceCube upper limit will be well below it.
We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the exp lanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.
Neutrinos are unique cosmic messengers. Present attempts are directed to extend the window of cosmic neutrino observation from low energies (Sun, supernovae) to much higher energies. The aim is to study the most violent processes in the Universe whic h accelerate charged particles to highest energies, far beyond the reach of laboratory experiments on Earth. These processes must be accompanied by the emission of neutrinos. Neutrinos are electrically neutral and interact only weakly with ordinary matter; they thus propagate through the Universe without absorption or deflection, pointing back to their origin. Their feeble interaction, however, makes them extremely difficult to detect. The years 2008-2010 have witnessed remarkable steps in developing high energy neutrino telescopes. In 2010, the cubic-kilometre neutrino telescope IceCube at the South Pole has been completed. In the Mediterranean Sea the first-generation neutrino telescope ANTARES takes data since 2008, and efforts are directed towards KM3NeT, a telescope on the scale of several cubic kilometres. The next years will be key years for opening the neutrino window to the high energy Universe. With an instrumented volume of a cubic kilometre, IceCube is entering a region with realistic discovery potential. Discoveries or non-discoveries of IceCube will have a strong impact on the future of the field and possibly mark a moment of truth. In this review, we discuss the scientific case for neutrino telescopes, describe the detection principle and its implementation in first- and second-generation installations and finally collect the existing physics results and the expectations for future detectors. We conclude with an outlook to alternative detection methods, in particular for neutrinos of extremely high energies.
128 - Dmitry Zaborov 2020
Neutrino astronomy offers a novel view of the non-thermal Universe and is complementary to other astronomical disciplines. The field has seen rapid progress in recent years, including the first detection of astrophysical neutrinos in the TeV-PeV ener gy range by IceCube and the first identified extragalactic neutrino source (TXS 0506+056). Further discoveries are aimed for with new cubic-kilometer telescopes in the Northern Hemisphere: Baikal-GVD, in Lake Baikal, and KM3NeT-ARCA, in the Mediterranean sea. The construction of Baikal-GVD proceeds as planned; the detector currently includes over 2000 optical modules arranged on 56 strings, providing an effective volume of 0.35 km$^3$. We review the scientific case for Baikal-GVD, the construction plan, and first results from the partially built array.
KCDC, the KASCADE Cosmic-ray Data Centre, is a web-based interface where initially the scientific data from the completed air-shower experiment KASCADE-Grande was made available for the astroparticle community as well as for the interested public. Ov er the past 7 years, we have continuously extended the data shop with various releases and increased both the number of detector components from the KASCADE-Grande experiment and the data sets and corresponding simulations. With the latest releases we added a new and independent data shop for a specific KASCADE-Grande event selection and by that created the technology for integrating further data shops and data of other experiments, like the data of the air-shower experiment MAKET-ANI in Armenia. In addition, we made available educational examples how to use the data, more than 100 cosmic ray energy spectra from various experiments, and recently attached a public server with access to Jupyter notebooks. In this paper we present a brief history of KCDC, the main features of the recent release as well as will discuss future development plans.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا