ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel-ATLAS/GAMA: spatial clustering of low-redshift sub-mm galaxies

287   0   0.0 ( 0 )
 نشر من قبل Eelco van Kampen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the clustering properties of low-redshift (z < 0.3) sub-mm galaxies detected at 250 micron in the Herschel-ATLAS Science Demonstration Phase (SDP) field. We selected a sample for which we have high-quality spectroscopic redshifts, obtained from reliably matching the 250-micron sources to a complete (for r < 19.4) sample of galaxies from the GAMA database. Both the angular and spatial clustering strength are measured for all z < 0.3 sources as well as for five redshift slices with thickness delta z=0.05 in the range 0.05 < z < 0.3. Our measured spatial clustering length r_0 is comparable to that of optically-selected, moderately star-forming (blue) galaxies: we find values around 5 Mpc. One of the redshift bins contains an interesting structure, at z = 0.164.



قيم البحث

اقرأ أيضاً

We present measurements of the angular correlation function of sub-millimeter (sub-mm) galaxies (SMGs) identified in four out of the five fields of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) - GAMA-9h, GAMA-12h, GAMA-15h and NGP - with flux densities $S_{250mu m}$>30 mJy at 250 {mu}m. We show that galaxies selected at this wavelength trace the underlying matter distribution differently at low and high redshifts. We study the evolution of the clustering finding that at low redshifts sub-mm galaxies exhibit clustering strengths of $r_0$ $sim$ 2 - 3 $h^{-1}$ Mpc, below z < 0.3. At high redshifts, on the other hand, we find that sub-mm galaxies are more strongly clustered with correlation lengths $r_0$ = 8.1 $pm$ 0.5, 8.8 $pm$ 0.8 and 13.9 $pm$ 3.9 $h^{-1}$Mpc at z = 1 - 2, 2 - 3 and 3 - 5, respectively. We show that sub-mm galaxies across the redshift range 1 < z < 5, typically reside in dark-matter halos of mass of the order of ~ $10^{12.5}$ - $10^{13.0}$ $h^{-1} , M_{odot}$ and are consistent with being the progenitors of local massive elliptical galaxies that we see in the local Universe.
Upon its completion the Herschel ATLAS (H-ATLAS) will be the largest submillimetre survey to date, detecting close to half-a-million sources. It will only be possible to measure spectroscopic redshifts for a small fraction of these sources. However, if the rest-frame spectral energy distribution (SED) of a typical H-ATLAS source is known, this SED and the observed Herschel fluxes can be used to estimate the redshifts of the H-ATLAS sources without spectroscopic redshifts. In this paper, we use a subset of 40 H-ATLAS sources with previously measured redshifts in the range 0.5<z<4.2 to derive a suitable average template for high redshift H-ATLAS sources. We find that a template with two dust components T_c = 23.9 K, T_h = 46.9 K and ratio of mass of cold dust to mass of warm dust of 30.1) provides a good fit to the rest-frame fluxes of the sources in our calibration sample. We use a jackknife technique to estimate the accuracy of the redshifts estimated with this template, finding a root mean square of Delta z/(1+z) = 0.26. For sources for which there is prior information that they lie at z > 1 we estimate that the rms of Delta z/(1+z) = 0.12. We have used this template to estimate the redshift distribution for the sources detected in the H-ATLAS equatorial fields, finding a bimodal distribution with a mean redshift of 1.2, 1.9 and 2.5 for 250, 350 and 500 um selected sources respectively. end{abstract}
We report a 4.8$sigma$ measurement of the cross-correlation signal between the cosmic microwave background (CMB) lensing convergence reconstructed from measurements of the CMB polarization made by the POLARBEAR experiment and the infrared-selected ga laxies of the Herschel-ATLAS survey. This is the first measurement of its kind. We infer a best-fit galaxy bias of $b = 5.76 pm 1.25$, corresponding to a host halo mass of $log_{10}(M_h/M_odot) =13.5^{+0.2}_{-0.3}$ at an effective redshift of $z sim 2$ from the cross-correlation power spectrum. Residual uncertainties in the redshift distribution of the sub-mm galaxies are subdominant with respect to the statistical precision. We perform a suite of systematic tests, finding that instrumental and astrophysical contaminations are small compared to the statistical error. This cross-correlation measurement only relies on CMB polarization information that, differently from CMB temperature maps, is less contaminated by galactic and extra-galactic foregrounds, providing a clearer view of the projected matter distribution. This result demonstrates the feasibility and robustness of this approach for future high-sensitivity CMB polarization experiments.
271 - A. Dariush , L. Cortese , S. Eales 2011
We investigate the ultraviolet and optical properties and environment of low redshift galaxies detected in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) science demonstration data. We use the Sloan Digital Sky Survey seventh releas e and the Galaxy And Mass Assembly database to select galaxies with r_Petro < 19.0 mag in the redshift range 0.02 < z < 0.2 and look for their submillimeter counterparts in H-ATLAS. Our results show that at low redshift, H-ATLAS detects mainly blue/star-forming galaxies with a minor contribution from red systems which are highly obscured by dust. In addition we find that the colour of a galaxy rather than the local density of its environment determines whether it is detectable by H-ATLAS. The average dust temperature of galaxies that are simultaneously detected by both PACS and SPIRE is 25K pm 4K, independent of environment. This analysis provides a glimpse of the potential of the H-ATLAS data to investigate the submillimeter properties of galaxies in the local universe.
195 - S. J. Maddox , L. Dunne , E. Rigby 2010
We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measureme nts. For our 250 micron-selected sample we detect no significant clustering, consistent with the expectation that the 250 micron-selected sources are mostly normal galaxies at z<~ 1. For our 350 micron and 500 micron-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1, but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z~2-3 we detect significant strong clustering, leading to an estimate of r_0 ~ 7-11 h^{-1} Mpc. The slope of our clustering measurements is very steep, delta~2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا