ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for 14.4 keV solar axions from M1 transition of Fe-57 with CUORE crystals

169   0   0.0 ( 0 )
 نشر من قبل Marco Pallavicini
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of a search for axions from the 14.4 keV M1 transition from Fe-57 in the core of the sun using the axio-electric effect in TeO2 bolometers. The detectors are 5x5x5 cm3 crystals operated at about 10 mK in a facility used to test bolometers for the CUORE experiment at the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg d of data was made using a newly developed low energy trigger which was optimized to reduce the detectors energy threshold. An upper limit of 0.63 c kg-1 d-1 was established at 95% C.L.. From this value, a lower bound at 95% C.L. was placed on the Peccei-Quinn energy scale of fa >= 0.76 10**6 GeV for a value of S=0.55 for the flavor-singlet axial vector matrix element. Bounds are given for the interval 0.15 < S < 0.55.



قيم البحث

اقرأ أيضاً

We have searched for 14.4 keV solar axions or more general axion-like particles (ALPs), that may be emitted in the M1 nuclear transition of 57Fe, by using the axion-to-photon conversion in the CERN Axion Solar Telescope (CAST) with evacuated magnet b ores (Phase I). From the absence of excess of the monoenergetic X-rays when the magnet was pointing to the Sun, we set model-independent constraints on the coupling constants of pseudoscalar particles that couple to two photons and to a nucleon g_{agamma} |-1.19 g_{aN}^{0}+g_{aN}^{3}|<1.36times 10^{-16} GeV^{-1} for m_{a}<0.03 eV at the 95% confidence level.
In this paper we present a calculation of the expected flux of the mono-energetic 14.4 keV solar axions emitted by the M1 type nuclear transition of $^{57}$Fe in the Sun. These axions can be detected, e.g., by inverse coherent Bragg-Primakoff convers ion in single-crystal TeO$_2$ bolometers. The ingredients of this calculation are i) the axion nucleon coupling, estimated in several popular axion models and ii)the nuclear spin matrix elements involving realistic shell model calculations with both proton and neutron excitations. For the benefit of the experiments we have also calculated the branching ratio involving axion and photon emission
A search for resonant absorption of the solar axion by $^{83}rm{Kr}$ nuclei was performed using the proportional counter installed inside the low-background setup at the Baksan Neutrino Observatory. The obtained model independent upper limit on the c ombination of isoscalar and isovector axion-nucleon couplings $|g_3-g_0|leq 1.69times 10^{-6}$ allowed us to set the new upper limit on the hadronic axion mass of $m_{A}leq 130$ eV (95% C.L.) with the generally accepted values $S$=0.5 and $z$=0.56.
In a very conservative approach, supposing that total heat flow of the Earth is exclusively due to resonant capture inside the Earth of axions, emitted by 57-Fe nuclei on Sun, we obtain limit on mass of hadronic axion: m_a<1.8 keV. Taking into accoun t release of heat from decays of 40-K, 232-Th, 238-U inside the Earth, this estimation could be improved to the value: m_a<1.6 keV. Both the values are less restrictive than limits set in devoted experiments to search for 57-Fe axions (m_a<216-745 eV), but are much better than limits obtained in experiments with 83-Kr (m_a<5.5 keV) and 7-Li (m_a<13.9-32 keV).
We have started the development of a detector system, sensitive to single photons in the eV energy range, to be suitably coupled to one of the CAST magnet ports. This system should open to CAST a window on possible detection of low energy Axion Like Particles emitted by the sun. Preliminary tests have involved a cooled photomultiplier tube coupled to the CAST magnet via a Galileian telescope and a switched 40 m long optical fiber. This system has reached the limit background level of the detector alone in ideal conditions, and two solar tracking runs have been performed with it at CAST. Such a measurement has never been done before with an axion helioscope. We will present results from these runs and briefly discuss future detector developments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا