ﻻ يوجد ملخص باللغة العربية
We discuss the feasibility of the detection of the 21cm forest in the diffuse IGM with the radio telescope LOFAR. The optical depth to the 21cm line has been derived using simulations of reionization which include detailed radiative transfer of ionizing photons. We find that the spectra from reionization models with similar total comoving hydrogen ionizing emissivity but different frequency distribution look remarkably similar. Thus, unless the reionization histories are very different from each other (e.g. a predominance of UV vs. x-ray heating) we do not expect to distinguish them by means of observations of the 21cm forest. Because the presence of a strong x-ray background would make the detection of 21cm line absorption impossible, the lack of absorption could be used as a probe of the presence/intensity of the x-ray background and the thermal history of the universe. Along a random line of sight LOFAR could detect a global suppression of the spectrum from z>12, when the IGM is still mostly neutral and cold, in contrast with the more well-defined, albeit broad, absorption features visible at lower redshift. Sharp, strong absorption features associated with rare, high density pockets of gas could be detected also at z~7 along preferential lines of sight.
A late end to reionisation at redshift $zsimeq 5.3$ is consistent with observed spatial variations in the Ly$alpha$ forest transmission and the deficit of Ly$alpha$ emitting galaxies around extended Ly$alpha$ absorption troughs at $z=5.5$. In this mo
An alternative to both the tomography technique and the power spectrum approach is to search for the 21cm forest, that is the 21cm absorption features against high-z radio loud sources caused by the intervening cold neutral intergalactic medium (IGM)
We investigate the feasibility of detecting 21cm absorption features in the afterglow spectra of high redshift long Gamma Ray Bursts (GRBs). This is done employing simulations of cosmic reionization, together with the instrumental characteristics of
We derive constraints on the thermal and ionization states of the intergalactic medium (IGM) at redshift $approx$ 9.1 using new upper limits on the 21-cm power spectrum measured by the LOFAR radio-telescope and a prior on the ionized fraction at that
We investigate the feasibility of detecting and probing various components of the ionized intergalactic medium (IGM) and their turbulent properties at radio frequencies through observations of scatter broadening of compact sources. There is a strong