ترغب بنشر مسار تعليمي؟ اضغط هنا

Production of thermal photons in a simple chiral-hydrodynamic model

36   0   0.0 ( 0 )
 نشر من قبل Jeronimo Peralta Ramos
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a self-consistent chiral-hydrodynamic formalism which combines the linear $sigma$ model with second-order hydrodynamics in 2+1 dimensions to compute the spectrum of thermal photons produced in Au+Au collisions at $sqrt{s_{NN}}=200$ GeV. The temperature-dependent shear viscosity of the model, $eta$, is calculated from the linearized Boltzmann equation. We compare the results obtained in the chiral-hydrodynamic model to those obtained in the second-order theory with a Lattice QCD equation of state and a temperature-independent value of $eta/s$. We find that the thermal photon production is significantly larger in the latter model due to a slower evolution and larger dissipative effects.

قيم البحث

اقرأ أيضاً

We calculate the spectra of produced thermal photons in Au+Au collisions taking into account the nonequilibrium contribution to photon production due to finite shear viscosity. The evolution of the fireball is modeled by second-order as well as by di vergence-type 2+1 dissipative hydrodynamics, both with an ideal equation of state and with one based on Lattice QCD that includes an analytical crossover. The spectrum calculated in the divergence-type theory is considerably enhanced with respect to the one calculated in the second-order theory, the difference being entirely due to differences in the viscous corrections to photon production. Our results show that the differences in hydrodynamic formalisms are an important source of uncertainty in the extraction of the value of $eta/s$ from measured photon spectra. The uncertainty in the value of $eta/s$ associated with different hydrodynamic models used to compute thermal photon spectra is larger than the one occurring in matching hadron elliptic flow to RHIC data.
Thermal radiation of photons and dileptons from hadronic matter plays an essential role in understanding electromagnetic emission spectra in high-energy heavy-ion collisions. In particular, baryons and anti-baryons have been found to be strong cataly sts for electromagnetic radiation, even at collider energies where the baryon chemical potential is small. Here, we conduct a systematic analysis of $pi$- and $omega$-meson-induced reactions off a large set of baryon states. The interactions are based on effective hadronic Lagrangians where the parameters are quantitatively constrained by empirical information from vacuum decay branchings and scattering data, and gauge invariance is maintained by suitable regularization procedures. The thermal emission rates are computed using kinetic theory but can be directly compared to previous calculations using hadronic many-body theory. The comparison to existing calculations in the literature reveals our newly identified contributions to be rather significant.
Astrophysical neutrino fluxes are often modeled as power laws of the energy. This is reasonable in the case of hadronic sources, but it does not capture the behavior in photohadronic sources, where the spectrum depends on the properties of the target photons on which protons collide. This limits the possibility of a unified treatment of different sources. In order to overcome this difficulty, we model the target photons by a blackbody spectrum. This model is sufficiently flexible to reproduce neutrino fluxes from known photohadronic sources; we apply it to study the sensitivity of Dense Neutrino Arrays, Neutrino Telescopes and Neutrino Radio Arrays to photohadronic sources. We also classify the flavor composition of the neutrino spectrum in terms of the parameter space. We discuss the interplay with the experiments, studying the changes in the track-to-shower ratio induced by different flavor compositions, both within and outside the region of the Glashow resonance.
336 - Tomohiro Abe , K. S. Babu 2019
We propose a theory of chiral fermion dark matter (DM) with an isospin-3/2 fermion of a dark sector $SU(2)_D$ gauge symmetry, which is arguably the simplest chiral theory. An isospin-3 scalar breaks $SU(2)_D$ down to a discrete non-Abelian group $T$ and generates the DM mass. The $SU(2)_D$ gauge symmetry protects the DM mass and guarantees its stability. We derive consistency conditions for the theory and study its DM phenomenology. In some regions of parameters of the theory a two-component DM scenario is realized, consisting of a fermion and a boson, with the boson being the lightest $T$ nonsinglet field. In the case of single component fermionic DM, we find that internal consistency of the theory, perturbativity arguments, and the observed relic abundance limit the DM mass to be less than $280$ GeV, except when $s$-channel resonance regions are open for annihilation. For a significant part of the parameter space, the theory can be tested in DM direct detection signals at the LZ and XENONnT experiments.
69 - S. Fazio 2011
Exclusive diffractive production of real photons and vector mesons in ep collisions has been studied at HERA in a wide kinematic range. Here we present and discuss a Regge-type model of real photon production (Deeply Virtual Compton Scattering), as w ell as production of vector mesons (VMP) treated on the same footing by using an extension of a factorized Regge-pole model proposed earlier. The model has been fitted to the HERA data. Despite the very small number of the free parameters, the model gives a satisfactory description of the experimental data, both for the total cross section as a function of the photon virtuality Q2 or the energy W in the center of mass of the gammastar-p system, and the differential cross sections as a function of the squared four-momentum transfer t with fixed Q2 and W.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا