ترغب بنشر مسار تعليمي؟ اضغط هنا

The stratified evolution of a cool star

114   0   0.0 ( 0 )
 نشر من قبل Georges Michaud
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A low mass star usually experiences stratification and abundance anomalies during its evolution. A 0.95 solar mass star with a metallicity Z = 0.004 is followed from the main-sequence to the Horizontal Branch (HB). On the main-sequence the larger effects of stratification may come from accretion as was suggested in relation to metallicity and planet formation. As it evolves through the giant branch, stratification appears around the hydrogen burning shell. It may create hydrodynamic instabilities and be related to abundance anomalies on the giant branch. After the He flash the star evolves to the HB. If it loses enough mass, it ends up a hot HB star (or in the field an sdB star) with effective temperatures larger than 11000 K. All sdB stars are observed to have an approximately solar iron abundance whatever their original metallicity, implying overabundances by factors of up to 100. So should the 0.95 solar mass star. How its internal hydrodynamic properties on the main sequence may influence its fate on the HB is currently uncertain.

قيم البحث

اقرأ أيضاً

Observations and theory suggest that star clusters can form in a subvirial (cool) state and are highly substructured. Such initial conditions have been proposed to explain the level of mass segregation in clusters through dynamics, and have also been successful in explaining the origin of trapezium-like systems. In this paper we investigate, using N-body simulations, whether such a dynamical scenario is consistent with the observed binary properties in the Orion Nebula Cluster (ONC). We find that several different primordial binary populations are consistent with the overall fraction and separation distribution of visual binaries in the ONC (in the range 67 - 670 au), and that these binary systems are heavily processed. The substructured, cool-collapse scenario requires a primordial binary fraction approaching 100 per cent. We find that the most important factor in processing the primordial binaries is the initial level of substructure; a highly substructured cluster processes up to 20 per cent more systems than a less substructured cluster because of localised pockets of high stellar density in the substructure. Binaries are processed in the substructure before the cluster reaches its densest phase, suggesting that even clusters remaining in virial equilibrium or undergoing supervirial expansion would dynamically alter their primordial binary population. Therefore even some expanding associations may not preserve their primordial binary population.
We present upper limits on the X-ray emission for three neutron stars. For PSR J1840$-$1419, with a characteristic age of 16.5 Myr, we calculate a blackbody temperature upper limit (at 99% confidence) of $kT_{mathrm{bb}}^{infty}<24^{+17}_{-10}$ eV, m aking this one of the coolest neutron stars known. PSRs J1814$-$1744 and J1847$-$0130 are both high magnetic field pulsars, with inferred surface dipole magnetic field strengths of $5.5times10^{13}$ and $9.4times10^{13}$ G, respectively. Our temperature upper limits for these stars are $kT_{mathrm{bb}}^{infty}<123^{+20}_{-33}$ eV and $kT_{mathrm{bb}}^{infty}<115^{+16}_{-33}$ eV, showing that these high magnetic field pulsars are not significantly hotter than those with lower magnetic fields. Finally, we put these limits into context by summarizing all temperature measurements and limits for rotation-driven neutron stars.
120 - Adam J. Burgasser 2010
The Folded-port InfraRed Echellette (FIRE) has recently been commissioned on the Magellan 6.5m Baade Telescope. This single object, near-infrared spectrometer simultaneously covers the 0.85-2.45 micron window in both cross-dispersed (R ~ 6000) or pri sm-dispersed (R ~ 250-350) modes. FIREs compact configuration, high transmission optics and high quantum efficiency detector provides considerable sensitivity in the near-infrared, making it an ideal instrument for studies of cool stars and brown dwarfs. Here we present some of the first cool star science results with FIRE based on commissioning and science verification observations, including evidence of clouds in a planetary-mass brown dwarf, accretion and jet emission in the low-mass T Tauri star TWA 30B, radial velocities of T-type brown dwarfs, and near-infrared detection of a debris disk associated with the DAZ white dwarf GALEX 1931+01.
117 - Leen Decin 2020
The chemical enrichment of the Universe; the mass spectrum of planetary nebulae, white dwarfs and gravitational wave progenitors; the frequency distribution of Type I and II supernovae; the fate of exoplanets ... a multitude of phenomena which is hig hly regulated by the amounts of mass that stars expel through a powerful wind. For more than half a century, these winds of cool ageing stars have been interpreted within the common interpretive framework of 1-dimensional (1D) models. I here discuss how that framework now appears to be highly problematic. * Current 1D mass-loss rate formulae differ by orders of magnitude, rendering contemporary stellar evolution predictions highly uncertain. These stellar winds harbour 3D complexities which bridge 23 orders of magnitude in scale, ranging from the nanometer up to thousands of astronomical units. We need to embrace and understand these 3D spatial realities if we aim to quantify mass loss and assess its effect on stellar evolution. We therefore need to gauge * the 3D life of molecules and solid-state aggregates: the gas-phase clusters that form the first dust seeds are not yet identified. This limits our ability to predict mass-loss rates using a self-consistent approach. * the emergence of 3D clumps: they contribute in a non-negligible way to the mass loss, although they seem of limited importance for the wind-driving mechanism. * the 3D lasting impact of a (hidden) companion: unrecognised binary interaction has biased previous mass-loss rate estimates towards values that are too large. Only then will it be possible to drastically improve our predictive power of the evolutionary path in 4D (classical) spacetime of any star.
93 - K. Stepien 2011
A set of 27 evolutionary models of cool close binaries was computed under the assumption that their evolution is influenced by the magnetized winds. Initial periods of 1.5, 2.0 and 2.5 d were considered. For each period three values of 1.3, 1.1 and 0 .9 solar mass were taken as the initial masses of the more massive components. Here the results of the computations of the first evolutionary phase are presented, which starts from the initial conditions and ends when the more massive component reaches its critical Roche lobe. In all considered cases this phase lasts for several Gyr. For binaries with the higher total mass and/or longer initial periods this time is equal to, or longer than the main sequence life time of the more massive component. For the remaining binaries it amounts to a substantial fraction of this life time. From the statistical analysis of models, the predicted period distribution of detached binaries with periods shorter than 2 d was obtained and compared to the observed distribution from the ASAS data. An excellent agreement was obtained under the assumption that the period distribution in this range is determined solely by the mass and angular momentum loss due to the magnetized winds. This result indicates, in particular, that virtually all cool detached binaries with periods of a few tenths of a day, believed to be the immediate progenitors of W UMa-type stars, were formed from detached systems with periods around 2-3 d and that magnetic braking is the dominant formation mechanism of cool contact binaries. It operates on the time scale of several Gyr rendering them rather old, with age of 6-10 Gyr. The results of the present analysis will be used as input data to investigate the subsequent evolution of the binaries, through the mass exchange phase and contact or semi-detached configuration till the ultimate merging of the components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا