ﻻ يوجد ملخص باللغة العربية
Exciton condensate is a vast playground in studying a number of symmetries that are of high interest in the recent developments in topological condensed matter physics. In DQWs they pose highly nonconventional properties due to the pairing of non identical fermions with a spin dependent order parameter. Here, we demonstrate a new feature in these systems: the robustness of the ground state to weak external B-field and the appearance of the artificial spinor gauge fields beyond a critical field strength where, negative energy pair-breaking quasi particle excitations are created in certain $k$ regions (DX-pockets). The DX-pockets are the Kramers symmetry broken analogs of the negative energy pockets examined in the 60s by Sarma, where they principally differ from the latter in their non-degenerate energy bands due to the absence of the time reversal symmetry. They respect a disk or a shell-topology in $k$-space or a mixture between them depending on the B-field strength and the electron-hole mismatch. The Berry connection between the artificial flux and the TKNN number is made. The artificial spinor gauge field describes a collection of pure spin vortices in real space when the B-field has only inplane components.
Graphene SU(4) quantum Hall symmetry is extended to SO(8), permitting analytical solutions for graphene in a magnetic field that break SU(4) spontaneously. We recover standard graphene SU(4) physics as one limit, but find new phases and new propertie
We propose a projector-based renormalization framework to study exciton-polariton Bose-Einstein condensation in a microcavity matter-light system. Treating Coulomb interaction and electron-hole/photon coupling effects on an equal footing we analyze t
Collective (elementary) excitations of quantum bosonic condensates, including condensates of exciton polaritons in semiconductor microcavities, are a sensitive probe of interparticle interactions. In anisotropic microcavities with momentum-dependent
We present zero field muon spin lattice relaxation measurements of a Dysprosium triangle molecular magnet. The local magnetic fields sensed by the implanted muons indicate the coexistence of static and dynamic internal magnetic fields below $T^* ~35$
We propose a novel realization of Kondo physics with ultracold atomic gases. It is based on a Fermi sea of two different hyperfine states of one atom species forming bound states with a different species, which is spatially confined in a trapping pot