ترغب بنشر مسار تعليمي؟ اضغط هنا

Active Radiation Shield for Space Exploration Missions (ARSSEM)

118   0   0.0 ( 0 )
 نشر من قبل Stefano Lucidi Eng.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the major issues to be solved is the protection from the effects of ionizing radiation. Exploration mission, lasting two to three years in space, represents a very significant step from the point of view of radiation protection: both the duration (up to 5 times) and the intensity (up to 5 times) of the exposure to radiation are increased at the same time with respect to mission on the ISS reaching and sometime exceeding professional career limits. In this ARSSEM report, after reviewing the physics basis of the issue of radiation protection in space, we present results based for the first time on full physics simulation to understand the interplay among the the various factors determining the dose absorbed by the astronauts during a long duration mission: radiation composition and energy spectrum, 3D particle propagation through the magnetic field, secondary production on the spacecraft structural materia, dose sensitivity of the various parts of the human body. As first application of this approach, we use this analysis to study a new magnetic configuration based on Double Helix coil and exhibiting a number of interesting features which are suited to active shield application. The study also proposes a technology R&D roadmap for active radiation shield development which would match ESA decadal development strategy for human exploration of space.

قيم البحث

اقرأ أيضاً

Atom interferometry represents a quantum leap in the technology for the ultra-precise monitoring of accelerations and rotations and, therefore, for all the science that relies on the latter quantities. These sensors evolved from a new kind of optics based on matter-waves rather than light-waves and might result in an advancement of the fundamental detection limits by several orders of magnitude. Matter-wave optics is still a young, but rapidly progressing science. The Space Atom Interferometer project (SAI), funded by the European Space Agency, in a multi-pronged approach aims to investigate both experimentally and theoretically the various aspects of placing atom interferometers in space: the equipment needs, the realistically expected performance limits and potential scientific applications in a micro-gravity environment considering all aspects of quantum, relativistic and metrological sciences. A drop-tower compatible prototype of a single-axis atom interferometry accelerometer is under construction. At the same time the team is studying new schemes, e.g. based on degenerate quantum gases as source for the interferometer. A drop-tower compatible atom interferometry acceleration sensor prototype has been designed, and the manufacturing of its subsystems has been started. A compact modular laser system for cooling and trapping rubidium atoms has been assembled. A compact Raman laser module, featuring outstandingly low phase noise, has been realized. Possible schemes to implement coherent atomic sources in the atom interferometer have been experimentally demonstrated.
The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. An essential task for the experiment is to keep the Standard Model backgroun d level to less than 0.1 event after $2times 10^{20}$ protons on target. In the beam dump, around $10^{11}$ muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muon-induced combinatorial background. A novel active muon shield is used to magnetically deflect the muons out of the acceptance of the spectrometer. This paper describes the basic principle of such a shield, its optimization and its performance.
There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space w eather by improving forecasts, environmental specifications, and infrastructure design. [...] advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 hrs ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a comprehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. [...]
Light sterile neutrinos have been introduced as an explanation for a number of oscillation signals at $Delta m^2 sim 1$ eV$^2$. Neutrino oscillations at relatively short baselines provide a probe of these possible new states. This paper describes an accelerator-based experiment using neutral current coherent neutrino-nucleus scattering to strictly search for active-to-sterile neutrino oscillations. This experiment could, thus, definitively establish the existence of sterile neutrinos and provide constraints on their mixing parameters. A cyclotron-based proton beam can be directed to multiple targets, producing a low energy pion and muon decay-at-rest neutrino source with variable distance to a single detector. Two types of detectors are considered: a germanium-based detector inspired by the CDMS design and a liquid argon detector inspired by the proposed CLEAR experiment.
Mars lacks a substantial magnetic field; as a result, the solar wind ablates the Martian atmosphere, making the surface uninhabitable. Therefore, any terraforming attempt will require an artificial Martian magnetic shield. The fundamental challenge o f building an artificial magnetosphere is to condense planetary-scale currents and magnetic fields down to the smallest mass possible. Superconducting electromagnets offer a way to do this. However, the underlying physics of superconductors and electromagnets limits this concentration. Based upon these fundamental limitations, we show that the amount of superconducting material is proportional to $B_c^{-2}a^{-3}$, where $B_c$ is the critical magnetic field for the superconductor and $a$ is the loop radius of a solenoid. Since $B_c$ is set by fundamental physics, the only truly adjustable parameter for the design is the loop radius; a larger loop radius minimizes the amount of superconducting material required. This non-intuitive result means that the intuitive strategy of building a compact electromagnet and placing it between Mars and the Sun at the first Lagrange point is unfeasible. Considering reasonable limits on $B_c$, the smallest possible loop radius is $sim$10 km, and the magnetic shield would have a mass of $sim 10^{19}$ g. Most high-temperature superconductors are constructed of rare elements; given solar system abundances, building a superconductor with $sim 10^{19}$ g would require mining a solar system body with several times $10^{25}$ g; this is approximately 10% of Mars. We find that the most feasible design is to encircle Mars with a superconducting wire with a loop radius of $sim$ 3400 km. The resulting wire diameter can be as small as $sim$5 cm. With this design, the magnetic shield would have a mass of $sim 10^{12}$ g and would require mining $sim 10^{18}$ g, or only 0.1% of Olympus Mons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا