ﻻ يوجد ملخص باللغة العربية
The nature of charge transport within a correlated background medium can be described by spinless fermions coupled to bosons in the model introduced by Edwards. Combining numerical density matrix renormalization group and analytical projector-based renormalization methods we explore the ground-state phase diagram of the Edwards model in one dimension. Below a critical boson frequency any long-range order disappears and the system becomes metallic. If the charge carriers are coupled to slow quantum bosons the Tomonaga-Luttinger liquid is attractive and finally makes room for a phase separated state, just as in the t-J model. The phase boundary separating repulsive from the attractive Tomonaga-Luttinger liquid is determined from long-wavelength charge correlations, whereas fermion segregation is indicated by a vanishing inverse compressibility. On approaching phase separation the photoemission spectra develop strong anomalies.
To understand how charge transport is affected by a background medium and vice versa we study a two-channel transport model which captures this interplay via a novel, effective fermion-boson coupling. By means of (dynamical) DMRG we prove that this m
The paramagnetic phase diagram of the Hubbard model with nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping on the Bethe lattice is computed at half-filling and in the weakly doped regime using the self-energy functional approach for dynam
We show that soft core bosons in two dimensions with a ring exchange term exhibit a tendency for phase separation. This observation suggests that the thermodynamic stability of normal bose liquid phases driven by ring exchange should be carefully examined.
We study the competition between different possible ground states of the double-exchange model with strong ferromagnetic exchange interaction between itinerant electrons and local spins. Both for classical and quantum treatment of the local spins the
We address some open questions regarding the phase diagram of the one-dimensional Hubbard model with asymmetric hopping coefficients and balanced species. In the attractive regime we present a numerical study of the passage from on-site pairing domin