ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Brillouin scattering with pulsed spallation neutron source - spin-wave excitations from ferromagnetic powder samples -

212   0   0.0 ( 0 )
 نشر من قبل Shinichi Itoh
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron Brillouin scattering (NBS) method was developed using a pulsed spallation neutron source, and the feasibility of NBS was demonstrated by observing ferromagnetic spin waves in La$_{0.8}$Sr$_{0.2}$MnO$_3$ and SrRuO$_3$ powders. Gapless spin-wave excitations were observed in La$_{0.8}$Sr$_{0.2}$MnO$_3$, which were continuously extended to the lower scattering vector $Q$ from previous results using single crystals. The novel result is a well-defined quadratic $Q$ dependence in the spin-wave dispersion curve with a large energy gap in SrRuO$_3$ indicating robust spin-orbit coupling.



قيم البحث

اقرأ أيضاً

We report inelastic neutron scattering measurements of the magnetic excitations in SrFe2As2, the parent of a family of iron-based superconductors. The data extend throughout the Brillouin zone and up to energies of ~260meV. An analysis with the local -moment J_1-J2 model implies very different in-plane nearest-neighbor exchange parameters along the $a$ and $b$ directions, both in the orthorhombic and tetragonal phases. However, the spectrum calculated from the J1-J2 model deviates significantly from our data. We show that the qualitative features that cannot be described by the J1-J2 model are readily explained by calculations from a 5-band itinerant mean-field model.
Polarized neutron inelastic scattering has been used to measure spin excitations in ferromagnetic La$_{0.82}$Sr$_{0.18}$CoO$_{3}$. The magnon spectrum of these spin excitations is well defined at low energies but becomes heavily damped at higher ener gies, and can be modeled using a quadratic dispersion. We determined a spin wave stiffness constant of $D=94pm 3$,meV,AA$^{2}$. Assuming a nearest-neighbor Heisenberg model we find reasonable agreement between the exchange determined from D and the bulk Curie temperature. Several possible mechanisms to account for the observed spin-wave damping are discussed.
We present neutron scattering spectra taken from a single crystal of Na0.75CoO2, the precursor to a novel cobalt-oxide superconductor. The data contain a prominent inelastic signal at low energies (~10 meV), which is localized in wavevector about the origin of two-dimensional reciprocal space. The signal is highly dispersive, and decreases in intensity with increasing temperature. We interpret these observations as direct evidence for the existence of ferromagnetic spin fluctuations within the cobalt-oxygen layers.
High-energy, local multiplet excitations of the d-electrons are revealed in our inelastic neutron scattering measurements on the prototype magnetic insulator NiO. These become allowed by the presence of both non-zero crystal field and spin-orbit coup ling. The observed excitations are consistent with optical, x-ray, and EELS measurements of d-d excitations. This experiment serves as a proof of principle that high-energy neutron spectroscopy is a reliable and useful technique for probing electronic excitations in systems with significant crystal field and spin-orbit interactions.
We present data on the magnetic and magneto-elastic coupling in the hexagonal multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization and thermal expansion measurements. We measured the magnon dispersion along the main symmetry directions and used this data to determine the principal exchange parameters from a spin-wave model. An analysis of the magnetic anisotropy in terms of the crystal field acting on the Mn is presented. We compare the results for LuMnO3 with data on other hexagonal RMnO3 compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا