ﻻ يوجد ملخص باللغة العربية
Ionization profile monitors (IPMs) are used in the Fermilab Main Injector (MI) to monitor injection lattice matching by measuring turn-by-turn sigmas at injection and to measure transverse emittance of the beam during the acceleration cycle. The IPMs provide a periodic, non-destructive means of performing turn-by-turn emittance measurements where other techniques are not applicable. As Fermilab is refocusing its attention on the intensity frontier, non-intercepting diagnostics such as IPMs are expected to become even more important. This paper gives an overview of the operational use of IPMs for emittance measurements and injection lattice matching measurements at Fermilab, and summarizes the future plans.
For Project X, it is planned to inject a beam of 3 10**11 particles per bunch into the Main Injector. To prepare for this by studying the effects of higher intensity bunches in the Main Injector it is necessary to perform coalescing at 8 GeV. The res
At the end of its operations in 2011, the Fermilab antiproton production complex consisted of a sophisticated target system, three 8-GeV storage rings (namely the Debuncher, the Accumulator and the Recycler), 25 independent multi-GHz stochastic cooli
A two-year Large Aperture Quadrupole (WQB) Project was completed in the summer of 2006 at Fermilab. Nine WQBs were designed, fabricated and bench-tested by the Technical Division. Seven of them were installed in the Main Injector and the other two fo
From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at
To date, the 120 GeV Fermilab Main Injector accelerator has accelerated a single batch of protons from the 8 GeV rapid-cycling Booster synchrotron for production of antiprotons for Run II. In the future, the Main Injector must accelerate 6 or more Bo