ﻻ يوجد ملخص باللغة العربية
Ultracold atoms are trapped circumferentially on a ring that is pierced at its center by a flux tube arising from a light-induced gauge potential due to applied Laguerre-Gaussian fields. We show that by using optical coherent state superpositions to produce light-induced gauge potentials, we can create a situation in which the trapped atoms are simultaneously exposed to two distinct flux tubes, thereby creating superpositions in atomic quantum rings. We consider the examples of both a ring geometry and harmonic trapping, and in both cases the ground state of the quantum system is shown to be a superposition of counter-rotating states of the atom trapped on the two distinct flux tubes.
The efficiency of extracting single atoms or molecules from an ultracold bosonic reservoir is theoretically investigated for a protocol based on lasers, coupling the hyperfine state in which the atoms form a condensate to another stable state, in whi
Quantum simulators allow to explore static and dynamical properties of otherwise intractable quantum many-body systems. In many instances, however, it is the read-out that limits such quantum simulations. In this work, we introduce a new paradigm of
We study how macroscopic superpositions of coherent states produced by the nondissipative dynamics of binary mixtures of ultracold atoms are affected by atom losses. We identify different decoherence scenarios for symmetric or asymmetric loss rates a
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexit
We propose a quantum-enhanced iterative (with $K$ steps) measurement scheme based on an ensemble of $N$ two-level probes which asymptotically approaches the Heisenberg limit $delta_K propto R^{-K/(K+1)}$, $R$ the number of quantum resources. The prot