ﻻ يوجد ملخص باللغة العربية
Protostars grow in mass by accreting material through their discs, and this accretion is initially their main source of luminosity. The resulting radiative feedback heats the environments of young protostars, and may thereby suppress further fragmentation and star formation. There is growing evidence that the accretion of material onto protostars is episodic rather than continuous; most of it happens in short bursts that last up to a few hundred years, whereas the intervals between these outbursts of accretion could be thousands of years. We have developed a model to include the effects of episodic accretion in simulations of star formation. Episodic accretion results in episodic radiative feedback, which heats and temporarily stabilises the disc, suppressing the growth of gravitational instabilities. However, once an outburst has been terminated, the luminosity of the protostar is low, and the disc cools rapidly. Provided that there is enough time between successive outbursts, the disc may become gravitationally unstable and fragment. The model suggests that episodic accretion may allow disc fragmentation if (i) the time between successive outbursts is longer than the dynamical timescale for the growth of gravitational instabilities (a few kyr), and (ii) the quiescent accretion rate onto the protostar is sufficiently low (at most a few times 1e-7 Msun/yr). We also find that after a few protostars form in the disc, their own episodic accretion events shorten the intervals between successive outbursts, and sup- press further fragmentation, thus limiting the number of objects forming in the disc. We conclude that episodic accretion moderates the effect of radiative feedback from young protostars on their environments, and, under certain conditions, allows the formation of low-mass stars, brown dwarfs, and planetary-mass objects by fragmentation of protostellar discs.
It is speculated that the accretion of material onto young protostars is episodic. We present a computational method to include the effects of episodic accretion in radiation hydrodynamic simulations of star formation. We find that during accretion e
A star acquires much of its mass by accreting material from a disc. Accretion is probably not continuous but episodic. We have developed a method to include the effects of episodic accretion in simulations of star formation. Episodic accretion result
We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes -- magnetohydrodynamics, radiative transfer, and protostellar outflows -- and span a wide range of viri
We present the latest development of the disk gravitational instability and fragmentation model, originally introduced by us to explain episodic accretion bursts in the early stages of star formation. Using our numerical hydrodynamics model with impr
To distinguish between the different theories proposed to explain massive star formation, it is crucial to establish the distribution, the extinction, and the density of low-mass stars in massive star-forming regions. We analyzed deep X-ray observati