ترغب بنشر مسار تعليمي؟ اضغط هنا

Longitudinal magnetic excitation in KCuCl3 studied by Raman scattering under hydrostatic pressures

51   0   0.0 ( 0 )
 نشر من قبل Haruhiko Kuroe
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure Raman scattering in an interacting spin-dimer system KCuCl3 under hydrostatic pressures up to 5 GPa mediated by He gas. In the pressure-induced quantum phase, we observe a one-magnon Raman peak, which originates from the longitudinal magnetic excitationand is observable through the second-order exchange interaction Raman process. We report the pressure dependence of the frequency, halfwidth and Raman intensity of this mode.

قيم البحث

اقرأ أيضاً

99 - S. Nandi , A. Kreyssig , Y. Lee 2009
Element-specific x-ray resonant magnetic scattering investigations were performed to determine the magnetic structure of Eu in EuRh2As2. In the temperature range from 46 K down to 6 K, an incommensurate antiferromagnetic (ICM)structure with a tempera ture dependent propagation vector (0 0 0.9) coexists with a commensurate antiferromagnetic (CM) structure. Angular-dependent measurements of the magnetic intensity indicate that the magnetic moments lie in the tetragonal basal plane and are ferromagnetically aligned within the a-b plane for both magnetic structures. The ICM structure is a spiral-like magnetic structure with a turn angle of 162 deg between adjacent Eu planes. In the CM structure, this angle is 180 deg. These results are consistent with band-structure calculations which indicate a strong sensitivity of the magnetic configuration on the Eu valence.
Rare earth (R) half-Heusler compounds, RBiPt, exhibit a wide spectrum of novel ground states. Recently, GdBiPt has been proposed as a potential antiferromagnetic topological insulator (AFTI). We have employed x-ray resonant magnetic scattering to elu cidate the microscopic details of the magnetic structure in GdBiPt below T_N = 8.5 K. Experiments at the Gd L_2 absorption edge show that the Gd moments order in an antiferromagnetic stacking along the cubic diagonal [1 1 1] direction satisfying the requirement for an AFTI, where both time-reversal symmetry and lattice translational symmetry are broken, but their product is conserved.
We present data on the magnetic and magneto-elastic coupling in the hexagonal multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization and thermal expansion measurements. We measured the magnon dispersion along the main symmetry directions and used this data to determine the principal exchange parameters from a spin-wave model. An analysis of the magnetic anisotropy in terms of the crystal field acting on the Mn is presented. We compare the results for LuMnO3 with data on other hexagonal RMnO3 compounds.
We perform Raman spectroscopy studies on $alpha$-RuCl$_3$ at room temperature to explore its phase transitions of magnetism and chemical bonding under pressures. The Raman measurements resolve two critical pressures, about $p_1=1.1$~GPa and $p_2=1.7$ ~GPa, involving very different intertwining behaviors between the structural and magnetic excitations. With increasing pressures, a stacking order phase transition of $alpha$-RuCl$_3$ layers develops at $p_1=1.1$~GPa, indicated by the new Raman phonon modes and the modest Raman magnetic susceptibility adjustment. The abnormal softening and splitting of the Ru in-plane Raman mode provide direct evidence of the in-plane dimerization of the Ru-Ru bonds at $p_2=1.7$~GPa. The Raman susceptibility is greatly enhanced with pressure increasing and sharply suppressed after the dimerization. We propose that the system undergoes Mott collapse at $p_2=1.7$~GPa and turns into a dimerized correlated band insulator. Our studies demonstrate competitions between Kitaev physics, magnetism, and chemical bondings in Kitaev compounds.
73 - T. Finger , K. Binder , Y. Sidis 2014
Magnetic order and excitations in multiferroic DyMnO3 were studied by neutron scattering experiments using a single crystal prepared with enriched 162Dy isotope. The ordering of Mn moments exhibits pronounced hysteresis arising from the interplay bet ween Mn and Dy magnetism which possesses a strong impact on the ferroelectric polarization. The magnon dispersion resembles that reported for TbMnO3. We identify the excitations at the magnetic zone center and near the zone boundary in the b direction, which can possess electromagnon character. The lowest frequency of the zone-center magnons is in good agreement with a signal in a recent optical measurement so that this mode can be identified as the electromagnon coupled by the same Dzyaloshinski-Moriya interaction as the static multiferroic phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا